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SUMMARY
We have developed a mouse DNA methylation array that contains 296,070 probes representing the diver-
sity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference
resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies.
We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors,
patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA
methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that
tissue-specific methylation signatures localize to binding sites for transcription factors controlling the
corresponding tissue development. Age-associated hypermethylation is enriched at regions of
Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex mem-
bers. ApcMin/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation,
while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version
MM285) is widely accessible to the research community and will accelerate high-sample-throughput
studies in this important model organism.
INTRODUCTION

Cytosine-5 DNA methylation is the most commonly analyzed

epigenetic mark in higher eukaryotes, occurring primarily in the

sequence context 50-CpG-30 in vertebrates. In mammals, DNA

methylation plays a role in consolidating epigenetic states, coor-

dinating differentiation and development, and suppressing tran-

scription of endogenous transposable elements, among

others.1–3 A wide range of technologies has been developed

over the past few decades to interrogate DNA methylation

states.4–7 PCR-based strategies emphasize locus-specific

detection sensitivity, while bisulfite sequencing-based ap-

proaches can provide base-pair resolution DNA methylation in-
This is an open access article und
formation and array-based methods excel in efficiently handling

large numbers of samples.

The gold standard for deep genome-wide characterization

of DNA methylation has been whole-genome bisulfite

sequencing (WGBS).8 However, this comprehensive

approach is fairly cost and analysis intensive. Reduced rep-

resentation bisulfite sequencing (RRBS)9 has presented an

excellent compromise between sample throughput and

coverage, and has recently been extended to cover more

of the genome.10 Single-cell WGBS provides high-resolution

DNA methylation profiling of heterogeneous samples but

generally at lower genomic coverage than deep bulk

WGBS.11–13
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These sequencing-based approaches provide detailed profiles

of the methylome, but sample throughput is constrained by cost

and analytic complexity, despite efforts to address these limita-

tions.14 For large, population-based cancer genome and epige-

nome-wide association studies, Infinium BeadArrays15 are the

platform of choice for cost-effective, high-throughput DNA

methylation characterization. This technology uses a set of prede-

signed probes to interrogate hundreds of thousands of CpG sites

simultaneously, outputting a fractional methylation level as a b

value for each CpG. Infinium DNA methylation arrays have un-

questionably dominated DNA methylation profiling from the

perspective of sample size, with Infinium methylation data for

more than160,000humansamplesdeposited in theGeneExpres-

sion Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). Large-

scale projects, including The Cancer Genome Atlas,16 cover

additional tens of thousands of samples, not deposited at GEO.

These studies have collectively produced more than 1,200 publi-

cations in PubMed referencing Infinium DNA methylation arrays.

Infinium DNA methylation arrays provide several distinct

advantages. First, automated sample processing allows for

cost-effective analysis of hundreds of samples in parallel within

days, yielding highly reproducible and robust results.

Sequence-based protocols are less standardized and have a

much higher experimental failure rate. Second, the CpG content

on the arrays has been intentionally designed and validated to

represent biologically relevant sites in the genome with reduced

redundancy. Therefore, the informational value is high despite

the relatively small fraction of genomic CpGs interrogated. Third,

the b value output for each CpG dinucleotide represents a high-

precision measurement of the fraction of methylated molecules

for that site in the sample, something that is only achieved with

very deep sequencing using WGBS.15,17 Fourth, the bisulfite-

specific hybridization accentuates the evaluation of fully con-

verted molecules, whereas sequencing-based approaches

require bioinformatic discrimination between biological CpH

methylation and incomplete bisulfite conversion.18 Fifth, the con-

sistency of identical, well-annotated CpGs, analyzed across all

samples, makes for a highly streamlined and efficient data anal-

ysis, which is an often-overlooked cost component. Sixth, the

characterization of the same set of CpGs on all arrays greatly fa-

cilitates and improves cross-study comparison, validation, and

extrapolation. Seventh, the analysis pipelines for array data are

more mature and standardized than for WGBS.19,20 Moreover,

the hybridization fluorescence data can be used to extract other

types of genomic information that can be obtained by WGBS,

such as copy-number variations and genetic ancestry.18,20–22

Despite the extraordinary contribution of Infinium arrays to hu-

man DNA methylation studies, there have been no equivalent

commercial arrays targeting any model organism developed to

date. There have been sporadic attempts to apply the human In-

finium arrays to primates23–26 and mice.27–29 However, only 1%

of Infinium methylation EPIC probes are mappable to the mouse

genome, which can lead to array scanning problems, in addition

to the cost inefficiency and poor content utilization. A custom In-

finium array has recently become available targeting 36,000

conserved CpGs in mammals.30

The demand for a DNA methylation microarray is particularly

high for the mouse. Mice have long been used as an exceptional
2 Cell Genomics 2, 100144, July 13, 2022
organism to model human physiology and disease because of

their ease of handling, rapid breeding, and diverse genetics, as

well as the evolutionary conservation between primates and ro-

dents.31–34 In fact, mouse was among the vertebrate species for

which cytosine-5 DNA methylation was first reported in 1962.35

The first eukaryotic cytosine-5 DNA methyltransferase was

cloned from the mouse.36 Much of our understanding of the

role of DNA methylation in mammals stems from mouse

models.37–42 Experimental mouse studies generate large

numbers of tissue samples at lower cost, with greater ease

and fewer restrictions than human studies, and they allow

integration with functional genetic analyses.43 Therefore, a

cost-effective, high-sample-throughput DNA methylation array

efficiently targeting the most biologically relevant sites in the

mouse genome would provide a much-needed tool for the

mousemodel research community. Here, we present the rational

systematic design and first implementation of a highly efficient,

commercially available Infinium Mouse Methylation BeadChip

(version MM285), targeting almost 300,000 CpGs in the mouse

genome, and we demonstrate its high reliability, reproducibility,

and utility. We profiled 1,239 DNA samples encompassing 26 tis-

sue or cell types as a comprehensive resource for the research

community. We also disentangle aging and tumor-associated

changes using this powerful tool and demonstrate different

types of differentiation block by DNA methylation associated

with aging and tumorigenesis. Finally, we constructed and vali-

dated an epigenetic clock for themouse, using the array content.

RESULTS

Array design targeting biologically relevant epigenetic
features
We designed the Mouse Methylation BeadChip in three main

steps (Figure 1A). In the first step, we considered all genomic

CpGs in the mouse genome with all possible combinations of

the probe DNA strand (Watson versus Crick) and post-bisulfite

conversion strand (converted versus replicated daughter

strand). We screened potential probe designs for probe

sequence mapping, genetic polymorphism influence, probe hy-

bridization, and extension efficiency (see STAR Methods). In the

second step, we selected CpGs to target 13 genomic features

and eight groups of genomic regions associated with known

biology. To account for unknown biology, we included 28,011

random CpGs. Next, we chose the best probe design for each

included CpG by balancing probe design strand, number of

replicates, and Infinium probe chemistry. We also added several

categories of non-CpG probes to culminate in a total of 296,070

probes on the Mouse Methylation BeadChip (Figure S1A).

Probe selection covers the vast majority of protein-coding and

long non-coding RNA (lncRNA) genes (Figure 1B). We consider

CpGs within 1,500 bp from either direction of the transcript’s

transcription start site (TSS) as associated with the promoter

for that transcript. We were unable to design suitable probes

for 1,064 protein-coding genes. These genes are over-repre-

sented by olfactory receptor, vomeronasal receptor, defensin,

and Prame gene families which display a high degree of

sequence polymorphism, constraining probe design. We

included probes for pseudogene and microRNA (miRNA) TSSs,

https://www.ncbi.nlm.nih.gov/geo/
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enhancers, and CTCF binding sites. We covered the majority of

non-promoter CpG islands (CGIs), and included specific cate-

gories such as gene body CpGs, heterochromatic CpGs, trans-

posable elements, sex chromosome-specific CpGs, imprinting

control regions (ICRs), imprinting differentially methylated re-

gions (DMRs), other mono-allelic methylation sites, CpGs rele-

vant to germ-cell biology, early embryonic development, cancer,

aging and epigenetic clocks, metastable epialleles, human syn-

tenic regions, and mitochondrial CpGs, as well as non-CpG

cytosine methylation probes (Figure S1A). We also added

strain-specific SNP probes to facilitate strain confirmation and

backcross tracing. Probe counts for the different design cate-

gories can be found in Figure S1A, with other basic parameters

of the Mouse Methylation BeadChip, including probe mapp-

ability, bisulfite conversion strand designation, and probe

redundancy (see STAR Methods), as well as comparisons with

the human Infinium arrays in Figures S1B–S1I. Probes are in-

dexed with an improved probe ID system to accommodate

new features in probe design (see STAR Methods).

Because design-intent categories can yield probes associated

withmore than one such category, we also characterized the final

array content bymapping each probe to one of several non-over-

lapping consensus chromatin states (Figure 1C). We derived

consensus chromatin states from 66 ENCODE chromHMM

calls44 and plotted the abundance of probes on the array repre-

senting each chromatin category (Figure 1C, pie chart). Although

quiescent chromatin probes represent a large fraction of the

probes, normalization to the number of CpGs for each chromatin

state in the entire genome reveals that enhancers and promoters

are the most over-represented on the array compared with their

relative abundance in the entire genome, underscoring the utility

of the array in characterizing gene transcription control

(Figures 1C [lollipop plot] and S2B). We observed a consistent

representation of different chromatin states in the genome across

different tissues (Figure S2C). The probes are distributed

throughout the genome within both the euchromatic A and het-

erochromatic B compartments of the genome,45 loosely corre-

sponding to highly methylated domains and partially methylated

domains (PMDs), respectively8 (Figure S2D).

High measurement reproducibility across experiments
and laboratory settings
We profiled four colon tumor samples representing four different

mouse tumor models with diverse DNA methylation profiles in
Figure 1. Mouse DNA methylation array design and technical validatio

(A) Workflow of designing the mouse Infinium methylation BeadChip.

(B) The number of probes associated with each gene model biotype.

(C) Enrichment of the probes in different chromatin states. The consensus chrom

Distribution of interrogated CpGs in different chromatin states is shown at bottom

(D) Heatmap representing unsupervised clustering of four intestinal tumor sample

ities. 21,643 most variable probes are shown.

(E and F) Smooth scatterplot of two replicates from ApcMin (E) or Mlh1 (F) tumo

difference between the two replicates is shown on the top right quadrant.

(G) Probe success rate of samples of DNA input ranging from 5 to 1,000 ng. Dat

(H) Smooth scatterplots contrasting the comparison of a low-input sample (5 ng) a

losing intermediate methylation reading as DNA input decreases.

(I) Reproducibility of DNA methylation measurement from four tissues comparing

See also Figures S1 and S2; Table S1.
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8-fold replicates to evaluate the technical reproducibility of the

Infinium Mouse Methylation MM285 BeadChip. We employed

two separate laboratories to evaluate the reproducibility of the

complete experimental workflow, including bisulfite conversion,

using identical 96-well plate layouts with replicates on different

assay plates and BeadChip positions (Figure 1D). We have fully

implemented data processing for the MM285 version of the

mouse array in the SeSAMe (version 1.11+) InfiniumDNAmethyl-

ation data processing tool,20 available on GitHub (https://github.

com/zwdzwd/sesame) and Bioconductor (https://bioconductor.

org/packages/release/bioc/html/sesame.html). All subsequent

array analyses used SeSAMe data output. Unsupervised

clustering of the 21,555 most variably methylated CpG probes

revealed highly reproducible, tumor-specific DNA methylation

profiles, with a negligible impact of laboratory facility or

BeadChip position (Figure S2E). The between-lab Pearson cor-

relation coefficient between technical replicates at the same

plate and beadchip position was 0.9924 (n = 16 pairs) while the

mean within-plate correlation coefficient between technical rep-

licates at different beadchip positions was 0.9945 (n = 22 pairs),

and the within-lab between-plate correlation at the same bead-

chip position was 0.9981 (n = 2 pairs). Representative replicate

examples are shown in Figures 1E and 1F.

Reproducible results with reduced input DNA quantities
and FFPE samples
Although the recommended input DNA quantity for the Infinium

Mouse Methylation BeadChip is 250–500 ng, we obtained

excellent probe success rates (fraction of probes with the total

fluorescent signal significantly exceeding background fluores-

cence) with input DNA quantities down to 100 ng (Figure 1G).

We also obtained noisy, but usable, data with input DNA quan-

tities as low as 5 ng (Figure 1H), consistent with other reports

that Infinium BeadChip technology can be applied to as little as

10 ng of input DNA.46 Low input DNA quantities resulted in a

higher percentage of probe measurements masked by the

pOOBAH approach for signal-to-background thresholding em-

ployed by the SeSAMe pipeline (Figure 1G).20 As expected

from the binary nature of DNA methylation, very low input

DNA quantities resulted in a collapse of intermediate b values

toward the extremes of the b distribution, with an accompa-

nying reduction in correlation compared with high-quality

data from larger DNA quantities (Pearson’s r = 0.87)

(Figure 1H).
n

atin states from 66 ENCODE ChromHMM files for twelve tissues were used.

left.

s, each analyzed in 8-fold replicate, including at two separate laboratory facil-

r samples. The colors represent DNA methylation b values, and the b value

a from two labs are represented by different shapes.

nd a high-input sample (500 ng), both with 1,000-ng-input sample. Samples are

fresh frozen samples and samples fixed with formalin for 24 and 48 h.

https://github.com/zwdzwd/sesame
https://github.com/zwdzwd/sesame
https://bioconductor.org/packages/release/bioc/html/sesame.html
https://bioconductor.org/packages/release/bioc/html/sesame.html
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We investigated the performance of the array on DNA samples

extracted from formalin-fixed, paraffin-embedded (FFPE) tis-

sues by allocating adjacent portions of mouse tissues to either

fresh freezing, or 24- versus 48-h formalin fixation and paraffin

embedding, prior to DNA extraction. We processed the DNA

samples using the FFPE restoration kit (see STARMethods). Un-

supervised clustering with the most variably methylated probes

revealed some evidence of minor sample processing effects

on the data, but these were eclipsed by biological differences

(Figures 1I and S2F). The mean correlation between matched

FF and FFPE samples was 0.9875.

Technical validation of the DNA methylation
measurements using methylated DNA titrations and
WGBS
To evaluate the accuracy of the DNAmethylationmeasurements,

we combined unmethylated DNA and M.SssI-treated fully meth-

ylatedDNA (seeSTARMethods), titrated to differentmixing ratios

from 0% to 100% methylated DNA (Figure 2A). The median b

value of each sample corresponds well to the titrated percentage

of methylated DNA (Figure 2B). To assess quantitative accuracy

using an orthogonal method, we compared array results for the

mouse B16 melanoma cell line DNA to WGBS of the same DNA

sample.We observed a strong correlation between the two assay

platforms for the vast majority of CpGs on the array (Pearson’s r =

0.98) (Figure 2C). Taken together, these results confirm the ability

of the mouse methylation array to measure the fraction of meth-

ylated molecules accurately and reproducibly for the vast major-

ity of CpG sites interrogated.

Biological validation of the DNA methylation
measurements using Dnmt1 knockouts and inhibitors
We assessed the impact of reduced levels of the main mainte-

nance DNA methyltransferase, Dnmt1, on global DNA methyl-

ation distributions using gene-targeted embryonic stem cells

(ESCs) (Figure 2D). We employed a series of hypomorphic al-

leles, R,47 P, H,48 and N,38 as well as two null alleles, S38 and

C.49 Heterozygous Dnmt1 knockout ESCs did not show a clear

reduction in DNA methylation levels, consistent with the pres-

ence of a remaining wild-type allele in the heterozygotes, but

the median methylation of various homozygous and com-

pound-heterozygous allelic combinations ranged from 20% to

55% of the average median of the wild-type lines (Figure 2D).

We have shown previously that combinations of Dnmt1 hypo-

morphic alleles result in suppression of intestinal tumor forma-

tion in the ApcMin/+ model of intestinal neoplasia commensurate

with decreasing Dnmt1 expression levels.47 Here we show that

global DNA methylation levels are proportionally reduced in

colonic mucosa of mice with these allelic combinations (Fig-

ure 2E). The DNA methylation levels of diverse tissues in

Dnmt1N/R mice also display proportionate decreases in DNA

methylation compared with wild-typemice. The least methylated

tissues in wild-type mice, such as muscle and stomach, are

among the most hypomethylated tissues in Dnmt1N/R mice (Fig-

ure S3A). In contrast, testes are among the most highly methyl-

ated tissues in wild-type mice, and they also appear relatively

resistant to hypomethylation except in the most severe hypo-

morphic Dnmt1N/R combination (Figures 2E and S3A). Studying
6,022 CpGs that are fully methylated in all tissues of the

Dnmt1+/+ mice, we observed that these regions were resistant

to methylation loss in Dnmt1N/R mice across all tissues analyzed

(Figure S3B). We found that these 6,022 CpGs were enriched

4.4-fold for transcribed regions comparedwith the overall mouse

array content, suggesting that these may represent widely ex-

pressed genes that retain gene body methylation through

Dnmt3b recruitment,50,51 even in Dnmt1-deficient conditions.

The extent of DNA hypomethylation at other regions in Dnmt1N/R

mice varies by chromatin state (Figure S3C), suggesting a strong

dependency of Dnmt1 mutation-induced hypomethylation on

genomic context. Our previous analyses had identified solo-

WCGW CpGs at PMD regions as more susceptible to mitosis-

associated methylation loss.145 Consistent with these findings

andDnmt1’s role as the primarymaintenancemethyltransferase,

solo-WCGW CpGs showed the deepest methylation loss in

Dnmt1N/R mice among all the chromatin states and CpG cate-

gories (Figures S3C and S3D).

The discovery 40 years ago of 5-aza-cytidine as an inhibitor of

DNA methylation in mouse 10T1/2 fibroblasts helped to launch

the modern era of DNA methylation research.52 We repeated

this experiment with 5-aza-20-deoxycytidine (decitabine [DAC])

and observed substantial hypomethylation, with the median b

value of DAC-treated cells reaching 81% of the median b value

of mock-treated DNA at day 12, with some recovery by day 24

to 86% of mock-treated cells (Figure 2F), consistent with prior

reports.53,54

Methylation biology of genomic elements
We explored the genomic distribution of DNA methylation at

various genomic elements in 1,119 DNA samples representing

26 different cell and tissue types. As expected, we observed

low DNA methylation levels at promoter regions (Figure 3A).

We did not identify such a dip at lncRNA promoters or miRNA

promoters, consistent with a relatively repressed transcriptional

state of most lncRNAs and miRNAs (Figure S4A). The integrated

genomic position information across probes can be further lever-

aged to detect spatial DNA methylation patterns, such as the

methylation states coupled to nucleosome phasing flanking

CTCF binding sites (Figure 3A, leftmost panels).

Samples obtained from female mice displayed intermedi-

ate methylation levels at X-linked CGIs, consistent with

X-inactivation in females but not in males (Figure 3B). We per-

formed multivariate regression to identify sex-associated

methylation differences and observed generally higher levels of

methylation in females compared with males, attributable to

the X-linked hypermethylation in females (Figure 3C). Notable re-

gions of female-associated hypomethylation include X-linked

non-coding RNAs, such as Firre and Xist, which are expressed

on the inactive X chromosome and associated with the mainte-

nance of its suppressive state (Figure 3C). A small number of

genes on the X chromosome are known to escape X-inactiva-

tion.55 We identified six X-linked genes predicted to escape

X-inactivation with sufficient probe coverage on the array. We

found that the methylation behavior of probes covering these

genes in female colon samples was similar to that of male colon

samples, consistent with escape from X-inactivation and distinct

from that of most other X-linked genes (Figure S3E).
Cell Genomics 2, 100144, July 13, 2022 5



Figure 2. Biological validation of the DNA methylation measurements

(A) DNA methylation b value distribution of titration samples run from two different labs.

(B) Comparison of median DNA methylation b values measured from the Infinium Mouse Methylation MM285 BeadChip (y axis) with titration fraction of methyl-

ated DNA (x axis). Two different labs are shown in different colors.

(C) Comparison of DNA methylation b values measured from the MM285 array (y axis) with WGBS methylation level measurement on the mouse B16 melanoma

cell line (45X mean CpG coverage) (x axis).

(D) Methylation level distribution of J1 embryonic stem cells with different Dnmt1 genotypes.

(E) Methylation level distribution of colon and testis DNA from Dnmt1 hypomorphic mice.

(F) Methylation level distribution of 10T1/2 cells treated with decitabine (DAC) at 200 nM, or mock-treated with PBS solvent for 24 h and then sampled 12 and

24 days after treatment.

See also Figure S3 and Table S2.
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Figure 3. Methylation biology of genomic elements

(A) Genomic distribution of DNAmethylation level centered onCTCF binding sites and protein-coding genes (autosomal and X-linked). TheCpGdensity per bp (top

row), the designed probe density per bp (middle row), and the average methylation level of samples stratified by tissue type (bottom row) are shown accordingly.

(B) Methylation level distribution of X-linked CpG-island CpGs in colon samples from male and female mice and testis samples from male mice.

(C) Genomic distribution of X-linked CpGs (top), mouse MM285 probe density (middle), and the sex-specific methylation difference, represented by the slope of

the sex-specific effect in a multiple regression (bottom).

(D) Heatmap showing methylation level of CpGs (rows) associated with 13 curated imprinting control regions (ICRs) in non-malignant and intestinal tumor tissue

samples (columns). CpGs are sorted by genomic coordinates. The associated ICR regions are labeled on the right. The grayscale horizontal bar on top represents

Dnmt1 genotype and malignancy state. The second bar represents tissue type, using the color key as indicated above the left side of the heatmap. The third bar

represents mouse age with the color key indicated on the right.

(E) DNA methylation level distribution of CpGs associated with ICRs or secondary differentially methylated regions. Colon (left) and testis (right) samples from

mouse samples of two sexes and Dnmt1 genotypes are shown.

(F) Correlation with age of CpG DNA methylation levels at 13 ICRs in 128 colon and small intestine tissue samples.

(G) Distribution of mitochondrial CpG methylation in colon and testis samples of different sex and Dnmt1 genotype.

(H) Heatmap showing CpHmethylation level. Rows correspond to cytosine loci in CpA, CpC, and CpT context. Columns correspond to ESCs and different tissue

samples.

See also Figure S4; Tables S3 and S4.
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We confirmed that CpGs at ICRs and DMRs in imprinted re-

gions display intermediate methylation levels, consistent with

their mono-allelically methylated state (Figure 3D). In male

germ cells, genomic imprints are erased and paternal imprinting

patterns established, in some cases as amethylated site or more

commonly as an unmethylated state at each individual locus, re-

sulting in polarization of DNA methylation levels at most im-

printed loci in the testis (Figures 3D and 3E, right). We analyzed

the H19-Igf2 ICRs and secondary DMRs in detail across mouse

somatic tissue samples and verified intermediate DNA methyl-

ation for the corresponding CpGs (Figure S4B). We performed

comprehensive annotation of probe association with previously

reported mouse ICRs (see key resources table). We also per-

formed de novo annotation of potential mono-allelically methyl-

ated and parent-of-origin-associated differential methylation

based on DNA methylation levels in the soma and testes, using

previously generated WGBS data on sperm and oocytes (see

STAR Methods and Figure S4C). One hundred and fifty-one

CpGs that are strictly intermediately methylated in somatic tis-

sues fall in 13 previously reported ICRs (Figure S4C) (see STAR

Methods for availability of these probe annotations).

Most CpGs associated with the 13 curated ICRs displayed

consistent intermediate methylation levels (Figure 3D). However,

a subset of these CpGs revealed tissue-specific or tumor-asso-

ciated loss of the intermediate methylation (LOIM) patterns

(framed by boxes). Notably, placental tissues display LOIM in a

subset of CpGs across multiple ICRs. One Rasgrf1-associated

CpG (cg47072751_BC21) displayed a gain of methylation only

in the hematopoietic cells, as seen in sorted blood cells and

spleen tissue, largely composed of blood cells. One CpG in the

Mest ICR revealed gain of methylation in a hindbrain-specific

manner. Intriguingly, we identified a coordinated LOIM at CpGs

across multiple ICRs in tissues of the gastrointestinal tract, rep-

resenting primarily a gain of methylation. We found a positive as-

sociation of this methylation gain with age (Figures 3F and S4D).

In intestinal tumors, we observed regional hypomethylation of

the Impact ICRs, whereas Rasgrf1 displayed regional hyperme-

thylation (Figure 3D, right).

In colon tissues with hypomorphic Dnmt1 alleles, imprinted re-

gions (Figure 3E, left) appeared to resist loss of methylation

compared with other genomic regions (Figure 2E, left). We

observed varying susceptibility among imprinted regions to hy-

pomethylation in Dnmt1 gene-targeted ESCs with more severe

global hypomethylation (Figure S4E). Among imprinted regions,

Rasgrf1 was the most resistant to hypomethylation, followed

by Peg13 and H19. Other imprinted loci appeared more suscep-

tible to loss of methylation in Dnmt1 hypomorphic ESCs.
Figure 4. Identification of tissue-specific DNA methylation patterns an

(A) t-SNE cluster map showing samples clustered by tissue type (left) and sex (ri

(B) Four-way Venn diagram showing CpGs differentially methylated with respect

(C) CpGs (rows) specifically methylated (top) and unmethylated (bottom) in each

(D) CpGs (rows) specifically methylated (top) and unmethylated (bottom) in each

(E) Track view of the DNAmethylation profile of the Mir200c locus as a marker for

five CpGs associated with the Mir200c locus (shown by the red bar at the bottom

(F) t-SNE cluster map of primary tissue samples from wild-type and Dnmt1NR mi

(right). The color legend is the same as in Figure 3A.

See also Figure S5.
We incorporated probes in the mouse array design for meta-

stable alleles and variably methylated regions (VMRs) that had

been described in the literature.56–59 These regions were

described as varying in methylation levels across individuals of

the same age, strain, and sex, within a defined cell type or tissue

context. However, we observed that the VMR probes were en-

riched for CpGs displaying tissue-, strain-, and sex-associated

differential methylation (Figure S4F). Therefore, it was important

to investigate whether these CpGs displayed more variable

methylation if we constrained our analysis within a fixed cell

type, strain, and age. We analyzed the methylation variability at

VMR probes in flow-sorted B cell samples of the same age

and strain, and did indeed observe significantly higher variance

of methylation levels across individual mice (Figure S4G, left

panel). However, we also noted that VMR probes have more in-

termediatemean b values (Figure S4G, right panel), allowing for a

higher variance on the b distribution scale.60 We did not observe

a significant difference in variance between VMR and non-VMR

probes with a mean b value constrained between 0.5 and 0.7,

suggesting that intermediate methylation values are a major

determinant of variable methylation at VMRs.

Mitochondrial CpGs appeared mostly unmethylated, as ex-

pected, owing to a lack of access to nuclear DNA methyltrans-

ferases (Figure 3G). We assessed non-CpG (CpH) methylation

in 798 samples from diverse tissues, using 2,310 CpH probes

included in the array design. Most tissues revealed very low

levels of CpH methylation (Figure 3H), consistent with the litera-

ture. We identified moderate levels of CpH methylation, particu-

larly CpAmethylation, in hindbrain and frontal lobe brain samples

in adult mice (Figure 3H). This CpH methylation is absent from

fetal brain samples, consistent with the establishment of CpH

methylation during postnatal development, whereas CpG

methylation is established during early development.61

Identification of tissue-specific DNA methylation
patterns and signatures
We explored the dominant factors influencing variations in the

mouse methylome by projecting each of the 1,076 samples to

two-dimensional space, using t-distributed stochastic neighbor

embedding (t-SNE) applied to all methylation probes on the array

(Figure 4A). Coloring the samples by different meta-labels re-

veals the extent to which the DNA methylome is driven by

different factors. Sample clustering was dominated by tissue

type (Figure 4A, left). We further clustered these DNA methyl-

omes using DBSCAN and calculated the uncertainty coefficient

using cluster membership and sample meta-information.

Consistent with the t-SNE analysis, tissue type is the dominating
d signatures

ght). The color legend is the same as in Figure 3A.

to strain, tissue, sex, and age in 467 mouse samples.

tissue (columns showing samples organized by tissue type).

sorted leukocyte cell type (columns showing samples organized by cell type).

epithelial versus mesenchymal cells. Tissue type and mean methylation level of

) are shown on the right-hand side of the heatmap.

ce using tissue-specific hypomethylation (left) and hypermethylation signature
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factor of DNA methylome determination, followed by age, strain,

and sex (Figures 4A [right], S5A, and S5B). Hierarchical clus-

tering of 246 samples representing 22 primary tissue types re-

vealed grouping primarily by tissue type (Figure S5C), verifying

the importance of tissue type in methylome determination. We

then performed whole-array multivariate regression analysis of

CpG methylation on tissue, strain, sex, and age on 467 non-tu-

mor samples (Figure 4B). The number of CpGs showing signifi-

cant DNA methylation differences associated with each variable

and their interactions are shown in a Venn diagram. Consistent

with our unsupervised analysis, tissue type and age were the

strongest individual drivers of specific methylation behavior.

Many CpGs displayed joint influences from multiple covariates

on methylation levels. For example, methylation at 95% of the

tissue-specific CpGs is under joint influence by other factors,

including strain (Figure 4B).

In light of the tissue specificity of methylation levels at many

CpGs on the array and the value of methylation-based tissue

deconvolution in various experimental settings, we sought to

identify a panel of probes that were differentially methylated in

specific tissues (Figure 4C). Grouping samples by tissue types,

Figure 4C represents probes (rows) that are specifically hyper-

or hypomethylated in each tissue (columns) compared with the

rest of the tissues. Some methylation signatures that are shared

across related tissue types (e.g., tissues from the gastrointestinal

tract) are also indicated. Certain tissue types are associated with

more abundant tissue-specific methylation than others (e.g., fat,

kidney, lung). These tissue-specific methylation signatures are

associated with binding of transcription factors controlling the

development of the corresponding tissue (Figures 4C, S5D,

and S5E).

The observation of more CpGs associated with tissue-specific

hypomethylation compared with hypermethylation reflects the

preference for transcription factors to bind unmethylated

DNA.62 This preference for methylated or unmethylated DNA

leads to tissue-specific transcription factors being divided into

two groups. For example, lymphocyte-specific hypomethylation

is associated with Tcf7, Ets1, Ikzf1, and Foxp3while the lympho-

cyte-specific hypermethylation is associated with Cebpa/b/g,

Tal1, and Gata1. Interestingly, Cebpa/b/g is associated with

lymphocyte-specific hypermethylation but, on the other hand,

myelocyte-specific hypomethylation, revealing a complex

mode of transcription factor-DNA interaction.63We used fluores-

cence-activated cell sorted leukocytes to further distinguish B

cells, CD4 T cells, CD8 T cells, andmonocytes (Figure 4D). These

methylation signatures can be used to investigate the presence

or absence of cell types in a mixed tissue/cell type scenario.

Methylation of the Mir200c locus is a known signature of hu-

man mesenchymal cells.64,65 We evaluated CpGs located in

the genomic neighborhood of the Mir200c gene and identified

five CpGs whose methylation can reliably discriminate mesen-

chymal cells from epithelial cells. Tissues composed of largely

epithelial cells such as colon and small intestine are largely un-

methylated, while tissues that consist primarily of mesenchymal

cells such as leukocytes are mostly methylated at this locus (Fig-

ure 4E). Using these probes, we can derive a DNA methylation-

based estimator of tissue purity for epithelial tumors, which we

utilized in tumor studies shown in Figure 7.
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As these tissue-specific methylation differences can be used

to mark tissue/cell identity, we next investigated to what extent

altering the methylome by Dnmt1 hypomorphic alleles would

impact the methylation of these sites and, potentially, cell iden-

tity. Although Dnmt1 deficiency does cause some perturbation

in these tissue-associated hypo- and hypermethylation signa-

tures, the samples remain largely grouped by tissue type in t-

SNE (Figure 4F). Visual inspection in an ordered heatmap reveals

that the tissue specificity of these signatures is retained well (Fig-

ure S5F), consistent with the preservation of observed tissue

anatomy and histology.

Inter-species comparisons and applications to patient-
derived xenografts
We explored the utility of this array for other mammalian species.

We mapped the array probes to 310 genome assemblies, as

collected in Ensembl (version 101). Figure 5A depicts the number

of mappable probes from 56 species for our array and in com-

parison with the human Infinium DNA methylation EPIC array.

As expected, the number of functional probes decreases as

evolutionary distance increases. The Infinium Mouse Methyl-

ation BeadChip is predicted to function optimally inMus muscu-

lus but should also be applicable to related species such as

Algerianmice, Ryukyumice, and Shrewmice.We experimentally

investigated the performance of the mouse array in human sam-

ples as well as in other rodents. We assessed performance on

human, rat, mouse, and hamster (CHO cell line) DNA. The

observed signal intensities in each probe category are consistent

with the predicted probe annotations (Figure S6A). Using 13,962

probes with high mapping quality to the rat genome, we experi-

mentally validated that these probes faithfully represent varying

methylation levels in rat DNA, using mixtures of fully methylated

and unmethylated rat DNA titrated at varying ratios (Figure 5B).

To investigate the cross-application of the human and mouse

arrays, we identified probe sets predicted to work for both spe-

cies on both human (EPIC) and mouse (MM285) arrays, as well

as probes that are predicted to only work for the designed spe-

cies. We experimentally tested these using mixtures of human

and mouse DNAs at varying ratios analyzed on both the human

(EPIC) and mouse methylation arrays (Figure 5C). As expected,

the probe sets that are predicted to work for both species main-

tain a high probe success rate as the ratios of mouse versus hu-

man DNA varies. In contrast, probes that were designed for one

species show a reduction in probe success rate as the fraction of

other species’ DNA increases (Figure 5C). Since the Infinium

platformcan accommodate low input DNAquantities (Figure 1H),

the presence of non-hybridizing DNA from another species does

not become problematic until an overwhelming excess of the

other species is reached.

The study of evolutionary conservation of DNAmethylation re-

quires proper control of other biological covariates such as tis-

sue. To study the conservation of methylation patterns and

investigate how tissue type may impact this conservation, we

first performed principal component analysis using probes

targeting CpGs in synteny with EPIC CpGs (Figure 5D). As ex-

pected, CpGs designed to map to EPIC CpGs are more evolu-

tionarily conserved than the other nuclear DNA CpG categories

(Figure S6B). The first principal component (PC1) is strongly



Figure 5. Inter-species comparisons and applications to patient-derived xenografts

(A) The numbers of functional EPIC and MM285 array probes on different vertebrate and invertebrate species.

(B) Distribution of the DNA methylation reading of functional probes in the rat genome. Rat DNA samples were derived from mixing fully methylated and fully

unmethylated rat DNA using titration ratios from 0% to 100%.

(C) Probe success rates of themouse (left) and EPIC arrays (right) on human-mousemixture titrated at a range of percentages of themouseDNA (x axis). Curves of

different color represent probe sets that work on either both species (yellow) or only the designed species.

(D) Principal component analysis showing the leading PC (PC1) on the x axis and combined PC2-10 on the y axis. Samples are colored by tissue with symbol

shape representing species.

(E and F) Heatmap display of the DNA methylation level of species-specific probes (E) and tissue-specific probes (F).

(G) Cross-validation of estimating human DNA fraction using human-mouse variant probes (x axis) and using human-mouse non-syntenic probes from both

mouse and EPIC arrays. Each triangle represents a human-mouse titration sample. Each circle represents a PDX sample. Color of the triangle corresponds to the

known titration fraction of human DNA.

See also Figure S6; Tables S5 and S6.
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associated with a species-specific effect (Figure S6C), account-

ing for 34% of the methylation variation at syntenic CpGs.

Pairwise correlation between human and mouse tissues in the

syntenic CpG methylomes revealed a varying degree of tissue

correspondence: the mouse esophagus, stomach, heart,

spleen, and testis are best correlated with the human corre-

sponding tissue (Figure S6D). In contrast, mouse brain, liver,

and colon are not well correlated with their human counterparts.

We next regressed the methylation level of human-mouse syn-

tenic CpGs on both tissue and species. We identified extensive

interaction of tissue and species effect in the regression analysis,

leaving only 149 syntenic CpGs showing species-specific

methylation but no tissue-specific methylation (Figures 5E and

S6E), and only 255 CpGs displaying only tissue-specific methyl-

ation (Figures 5F and S6E).
The color channels for Infinium-I probes are determined by the

identities of the probes’ extension bases.18 A subset of the

probes that map perfectly to the human genome can be associ-

ated with switched color channel due to single-nucleotide varia-

tions (SNVs) between human and mouse at the probe extension

base. These probes emit signal in one color channel when hy-

bridized to human DNA and the other when hybridized to mouse

DNA. We identified 19 such human-mouse variant probes on the

mouse MM285 array. Using these probes, we can measure the

fraction of human DNA in human-mouse mixture samples such

as patient-derived xenografts (PDXs). We can compare this

method with the total fluorescent signal intensities for species-

specific non-syntenic probes. A comparison between these

two approaches is shown in Figure 5G for mixed DNA samples

of human and mouse DNA titrated at known varying ratios and
Cell Genomics 2, 100144, July 13, 2022 11



Resource
ll

OPEN ACCESS
analyzed on both the mouse and human (EPIC) DNAmethylation

arrays (Figures 5G and S6F–S6I). The two methods for esti-

mating the fraction of human DNA correspond well with each

other (r = 0.97). Given the success of this analysis, we then

went on to estimate the fraction of human DNA in 17 colorectal

cancer PDX samples, using both methods to model estimates

of human DNA fraction in these xenografts (see STAR Methods).

The two methods provided highly correlated estimates in PDX

samples (r = 0.96, p < 0.05) (Figure 5G).

Mouse-strain-specific SNP probes facilitate tracing of
backcross generations
To facilitate epigenetic studies using inbred mice, we included

1,485 SNP probes for strain genotyping in the mouse MM285

array design. These probes were selected from a curated phy-

logeny of common inbred mouse strains, including C57-related

mice and Castle mice as well as some common wild mice (Fig-

ure 6A). We retrieved the whole-genome sequence data from

the Mouse Genome Project for each of the included strains

and identified SNVs that represent the segregation of each clade

on the phylogeny (see STAR Methods). We extracted DNA from

various tissue types from 25 different mouse strains and found

that these probes can be used to uniquely identify strains in a

cohort of 74 mouse DNA samples from 25 strains (Figure 6B).

Note that some SNPs are shared across multiple mouse strains

and represent clade-specific SNPs that can be used to study the

genotype of mouse strains not included in the original collection

of mouse strains. For example, we included SNPs that are com-

mon to all 129 strains in our collection, and these SNPs are

thought to define the entire 129 clade and may be used to iden-

tify other 129 strains (Figure 6B). To illustrate the use of these

SNP probes, we backcrossed 129S4/SvJaeJ mice to C57BL/6

mice for ten generations and extracted DNA at each backcross

step. Using 28 SNPs that segregate the two strains, starting

with pure inbred 129S4/SvJaeJ allelic homozygosity at these

28 SNPs, we then observe a shift at all loci to the heterozygous

state, as expected for the F1 generation, and subsequently a

progressive transition to C57BL/6 allelic homozygosity at all

the SNPs tracked (Figure 6C). This result illustrates the utility of

the Infinium Mouse Methylation BeadChip to identify mice with

a mixed genetic background and to trace backcrossing prog-

ress. We developed a maximum-likelihood-based classifier

that infers the closest strain information based on these SNPs.

The prediction based on this classifier is highly consistent with

the reported strain and can detect mice with a mixed genetic

background (Figure S7A).

Hypermethylation of Polycomb targets during aging
A major strength of the Infinium DNA methylation array platform

is that it can be scaled to a very large number of diverse samples

and thus enable us to distinguish epigenetic states specifically

associated with potentially confounded traits, such as age and

disease, as well as their interactions. The strongest predictor

of cancer risk is age, so it can be challenging to distinguish be-

tween epigenetic alterations associated with tumorigenesis

versus age or cellular proliferation. Inbredmousemodels provide

an opportunity to investigate these types of interactions in

controlled experimental conditions with homogeneous genetic
12 Cell Genomics 2, 100144, July 13, 2022
backgrounds. We profiled the methylomes of 56 independent

small intestinal tumor samples from ApcMin/+ mice and per-

formed multivariate regression of DNA methylation b values us-

ing age and tumor state as predictors to disentangle the relative

contributions of tumor-associated versus age-associated DNA

hypermethylation. We then conducted a comprehensive survey

of the overlap between DNA protein binding elements66 and

either the tumor- or age-associated hypermethylation sites.

We found that age-associated hypermethylation occurs pri-

marily at sites occupied by Polycomb Group (PcG) repressor

complexes in intestinal cells67 (Figure 7A, top), with a strong

overlap with binding sites for both PRC1, such as Cbx7 and

Rnf2, and for PRC2, including Ezh2 and Suz12 (Figure 7B). The

overlap of age-associated loss of methylation revealed an

enrichment of binding sites for proteins that regulate chromatin

loop stability, sister chromatid cohesion, and double-strand

break repair,68,69 including Ctcf and cohesin complex members

Smc1a, Stag1, Satb1, and Rad21 (Scc1) (Figure 7C), although

the odds ratios were considerably lower than for the hyperme-

thylation overlap.

Hypermethylation of differentiation regulatory elements
in intestinal tumorigenesis
We found that CpGs displaying tumor-associated hypermethyla-

tion are enriched for regions containing enhancer elements

(Figure 7A, bottom). Tumor-associated hypermethylation was

associated with transcription factors implicated in intestinal

tissue development, best exemplified by homeodomain tran-

scription factors Cdx2 and Prox1, and nuclear factors such as

Hnf4a, Hnf4g, Vdr, and Nr2d2 (Figure 7D).70 An analysis of the

associated target genes of these transcription factors indicates

an enrichment of gene ontology terms involved in intestinal cell

terminal differentiation and function (Figure 7E). We hypothesize

that hypermethylation of transcription factor binding sites con-

trolling enterocyte function results in a differentiation block,

which could promote tumorigenesis. Tumor-associated hypo-

methylation was associated with binding sites for the AP-1 tran-

scription factor (Figure 7F), consistent with our previous report

on human colorectal cancer.71

Construction of a mouse epigenetic clock
There has been broad interest in the application of DNA methyl-

ation profiles as a predictor of chronological age.72–74 Several

epigenetic clocks have been established for the mouse, largely

using RRBS.75–79 We collected 706 mouse tissues and con-

structed an epigenetic clock for the MM285 array using an

elastic net framework, selecting for 347 CpGs that predict the

chronological age of the mouse with a mean absolute error of

1.2 months (see STAR Methods) (Figure 7G). Although the

cellular expansion associated with tumorigenesis might be ex-

pected to distort the biological age of a tissue, we found in an

analysis of 156 intestinal tumor samples that the clock prediction

from our normal tissue model agreed with the reported chrono-

logical age of mice bearing these tumors, but with a greater ab-

solute mean deviation (Figure 7H). The clock features selected in

the model are composed of CpGs that both gain and lose

methylation with age (Figure S7B) and CpGs associated with

Polycomb-targeted chromatin (Figure S7C). Among tissue



Figure 6. Mouse strain-specific SNP probes facilitate tracing of backcross generations

(A) Inbred mouse strain pedigree and SNP probe design. Numbers in yellow indicate the number of segregating SNPs in the whole genome, from which SNP

probes were selected.

(B) Genotyping result of 27 mouse strains. Rows correspond to designed SNP probes. Columns correspond to samples. Rows are ordered such that probes that

uniquely isolate a mouse strain are listed on the top, followed by probes that identify multiple strains.

(C) Strain genotyping on multiple generations of the 129Sv mice backcrossed to C57BL/6 mice. Each row corresponds to a 129/Sv-C57BL/6 segregating SNP.

The fraction of 129/Sv allele is shown at the bottom.

See also Figure S7.
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types, testis displays the highest age overestimate, although this

is based on just three samples (Figure S7D). Its epigenome is

associated with the unique developmental trajectory of male

germ cells.
DISCUSSION

Mousemodels have profoundly impacted basic and translational

biological research, contributing to many important discoveries
Cell Genomics 2, 100144, July 13, 2022 13



Figure 7. Age- and tumor-associated DNA methylation and the development of an epigenetic clock

(A) Heatmap displaying DNA methylation gain associated with aging (top) and with tumorigenesis (bottom). Rows correspond to CpGs and columns correspond

to samples. Left-hand side bar represents whether probes (rows) fall to CpG islands (CGI), Polycomb repressive complex group (PcG) target, and enhancer

elements in small intestine samples.

(B) Transcription factors whose binding sites are enriched in CpGs that gain methylation with age. y axis represents odds ratio of enrichment, and x axis rep-

resents number of significant probes overlapping binding sites. Size of the dots denotes statistical significance of the enrichment (Fisher’s exact test).

(C) Transcription factors whose binding sites are enriched in CpGs that lose methylation with age.

(legend continued on next page)
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in the past century, including the elucidation of basic principles

of epigenetics.80–88 While our understanding of DNAmethylation

dynamics in genomic and chromatin contexts has benefited

greatly from bisulfite sequencing studies of limited sample size

in both mice and humans, large population-based DNA methyl-

ation studies and cancer genome projects continue to rely on

cost-effective Infinium arrays, which excel at sample throughput,

reliability and reproducibility, consistent feature sets, and ana-

lytic convenience. These features of Infinium arrays constitute

a highly efficient and effective DNA methylation profiling tool

for the large sample sizes dictated by the genetic heterogeneity

of human populations and the diversity of human pathologies.

With profiles of more than 160,000 healthy and diseased tissue

specimens publicly available, this platform has clearly domi-

nated large-scale DNAmethylation studies in humans. The wide-

spread use of mouse models in mechanistic and preclinical

studies of human disease, drug development, embryology,

immunology, nutrition, toxicology, metabolism, and numerous

others,89–93 together with the tremendous power of classical

and molecular mouse genetics,31,32 results in tens of millions

of mice used in research annually.94,95 Our understanding of

the role of epigenetics in many of these systems has been sty-

mied by the lack of a widely accessible, high-sample-throughput

DNAmethylation profilingmethod formice. Herewe describe the

design, validation, and application of such a tool, and present a

dataset of 1,239 DNA samples representing a comprehensive

DNA methylation atlas for the mouse.

We undertook the design of this mouse MM285 array with the

goal of representing the known diversity of mouse methylation

biology as efficiently as possible, while adding other genomic el-

ements of interest with the potential for methylation variation and

allowing for the discovery of unknown biology through the inclu-

sion of randomly selected CpGs. The high degree of local

methylation correlation among CpGs96 provided us with some

flexibility to select probes with high technical design scores for

representative regions. We covered all designable known pro-

moters for coding and non-coding transcripts, enhancers,

CGIs, CTCF binding sites, imprinted loci, epigenetic clock loci,

and CpH methylation. We included all CpGs syntenic with the

human Infinium EPIC array to maximize translation to human

biology.We took advantage of publicly availableWGBSdatasets

to prioritize probes with known biology, as well as the opp-

ortunity to include other types of useful probes such as strain-

specific SNPs. We also randomly selected CpGs to enable

discovery of novel biology in the event of limited mouse WGBS

data, e.g., colon cancer-associated datasets.

The human Infinium DNA methylation array platform has

benefited frommore than a decade of technology optimization.15

We incorporated this design knowledge in selecting optimal

probes for the Infinium Mouse Methylation MM285 BeadChip.
(D) Transcription factors whose binding sites are enriched in CpGs that gain meth

factor.

(E) Ontology terms enriched in target genes regulated by enhancers that gain DN

(F) Transcription factors whose binding sites are enriched in CpGs that lose met

(G) Scatterplot comparing age predicted by a mouse epigenetic clock using 347

(H) Scatterplot comparing age predicted by a mouse epigenetic clock using 347

See also Figure S7 and Table S7.
As a consequence, the array performed extremely well in terms

of reproducibility of methylation measurements, even between

those obtained in different laboratory settings. We achieved

excellent results with DNA extracted from FFPE tissues and

with input DNA quantities as low as 5 ng, corresponding to

less than 1,000 cells. Most commonly used WGBS methods

require at least 100 ng of DNA input, although some can be

pushed down to 10 ng.97 Standard RRBS requires a comparable

10–200 ng DNA input.98 Nevertheless, as template molecule

quantities decrease, allelic dropout increases during whole-

genome amplification, resulting in a loss of intermediate b values

(Figure 1H). This is similar to low library complexity in low-input

sequencing. The statistical uncertainty associated with this

sampling process can be modeled with a binomial process

conditioned on initial input, amplification cycles, and final signal

intensity.

With the popularity of the human array, this technology has

been rigorously tested by a very large number of independent

labs. We took advantage of the extensive knowledge gleaned

from the human array. In validating the accuracy of the DNA

methylationmeasurements using titrations of synthetically meth-

ylated DNA, we observed a slight S-shaped deviation of the me-

dian methylation measurements compared with the identity line

(Figure 2B). There was a similar slight offset in validation with

WGBS of a biological sample (Figure 2C). This is likely attribut-

able to the presence of background fluorescence intrinsic to

the BeadChip assay platform, as observed in our human array

studies,20,99 resulting in slight measurement bias on the array

platform. However, these minor inaccuracies compare favorably

with themore polarized errors obtained with bisulfite sequencing

without very deep coverage.

An advantage of using mice for epigenetic research is the abil-

ity to experimentally manipulate epigenetic control in vivo, which

is not feasible in human subjects. Hypomorphic and full

knockout alleles of the major maintenance DNA methyltrans-

ferase, Dnmt1, have been in use in the field for decades to

determine the role of DNAmethylation in tumorigenesis,42,47 em-

bryonic development,38 X-inactivation,100,101 transposon

silencing,102 and genomic imprinting,103 among others. We

have now for the first time documented the wider impacts of

these allelic combinations across the methylome in different

cell types. Homozygous knockout ESCs show substantial hypo-

methylation (median methylation reduced to 20%–55%

compared with the wild-type average median, Figure 2D), but

do retain some residual methylation, known to be attributable

to the activities of the de novo methyltransferases Dnmt3a and

Dnmt3b, which are expressed in mouse ESCs.49,104,105 It is

worth noting that the methylation levels are consistent with

descriptions of clonal differences in homozygous hypo-

morphic N/N ESCs, with clone 10 displaying more severe
ylation associated with tumorigenesis. Each dot corresponds to a transcription

A methylation.

hylation associated with tumorigenesis.

CpG probes (y axis) and reported age (x axis) in disease-free tissues.

CpG probes (y axis) and reported age (x axis) in mouse intestinal tumors.
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hypomethylation than clone 52, consistent with reported differ-

ences in measured DNA methyltransferase activity published

three decades ago.38 Although severe Dnmt1 depletion results

in activation of Xist expression from the active X chromo-

some,101 in the milder hypomorphic N/R combination, X-linked

CpGs in female mice appear relatively resistant to genomic hy-

pomethylation (Figure 3B), possibly reflecting selective pressure

in vivo for the maintenance of a single active X chromosome.

As expected, imprinted loci display broadly intermediate

levels of DNA methylation, consistent with their mono-allelic

methylation status (Figure 3D). We observed tissue-specific los-

ses of intermediate methylation among imprinted regions (Fig-

ure 3D) and differential susceptibility among imprinted loci to

loss of methylation in Dnmt1 hypomorphic conditions in ESCs

(Figure S4D), suggesting variations among loci in the level of

control of genomic imprints. Most imprinting loci displayed a

complete loss of DNA methylation in ESCs with homozygous

or compound-heterozygous Dnmt1 mutations (Figure S4D).

Peg13 retained some residual methylation in Dnmt1N/N clone

52 but not in clone 10 (Figure S4D). It is interesting to note that

all imprinted loci displayed considerably greater sensitivity to

Dnmt1 hypomorphic conditions in ESCs (Figure S4D) than in fetal

and adult somatic tissues (Figure 3D). This may be a reflection of

the strong dependence of imprint maintenance upon Dnmt1 in

early embryogenesis.106,107 Testicular tissues appear to have

the highest global methylation levels and are most resistant to

loss of methylation in Dnmt1 hypomorphic conditions (Figures

2E and S3A). This may be associated with Dnmt3a and Dnmt3b

expression in the male germ-cell lineage.108,109

The prevalence of CpH methylation in adult brain tissues con-

firms prior reports.61 The preference for CpA and, to a lesser

extent, CpT, is consistent with this methylation mediated by

Dnmt3A.110 As part of this mouse DNA methylation atlas we

have provided tissue-specific methylation signatures, which

can be used in deconvolution of mixed tissue samples. The large

number of samples incorporating a diversity of common con-

founding variables will also facilitate the use of reference-free de-

convolution approaches.111 We found that tissue-specific DNA

hypomethylation was associated with binding of transcription

factors involved in lineage specification and differentiation. For

example, tail-specific hypomethylation is associated with bind-

ing of Tbxt/Brachyury, a transcription factor whose mutation

leads to reduced tail length.112 Brain-specific hypomethylation

is enriched in binding sites of neuron development transcription

factors such asNeurog2, Foxg1, and Tbr2. The powerful cell line-

age tracing and reporter systems available for mice should facil-

itate further rapid advance of higher-resolution cell-specific

signatures.

One of the concerns for manymouse-based diseasemodels is

how well molecular patterns represent those in human counter-

parts. We show that this Infinium mouse MM285 array can be

used for analysis of hamster (11,505 probes) and rat (13,962

probes) samples, which provides access to other model organ-

isms with some physiology more similar to that in humans. We

also took care to include probes that target syntenic regions be-

tween human and mouse, to facilitate comparative epigenomics

and to allow direct comparison of tumor-associated methylation

changes in human and mouse lesions. These same probes are
16 Cell Genomics 2, 100144, July 13, 2022
also present on the human arrays, and a rich body of data on

virtually all human tissue types for exactly the same CpG sites

is readily available in the public domain, providing a comprehen-

sive human reference. We found that species- and tissue-spe-

cific methylations were intertwined. The diversity of tissue types

in our dataset allowed us to partially disentangle these effects.

Residual tissue heterogeneity may confound our comparative

analysis, as cell-type composition of corresponding organs is

likely to vary somewhat among mammals. We anticipate that

future studies using cell-type composition deconvolution, flow-

sorted cells, and/or single-cell methylation profiling will be

needed to confirm these suggestive findings. We also designed

innovative methods to help dissect human and mouse signals

from mixture samples such as PDX samples. These features

serve to expand the utility of the platform and the bioinformatic

analytical suite for modern mouse-based biomedical research.

We incorporated a selection of polymorphic genotyping

probes with sets unique to each of 25 mouse strains, which

will facilitate quality checks on strain purity and identity, benefit

experiments with outbred mice, and assist with the identification

of sample swaps, and which can be used to trace and accelerate

backcrossing experiments. The diversity of tissues in our

dataset allowed us to investigate the complex interactions be-

tween strain, tissue, age, and sex.

It has long been known that cancer-associated CpG-island

hypermethylation in human tumors is enriched for regions occu-

pied by Polycomb repressors in stem cells.113–115 It was hypoth-

esized that these events arise in an age-dependent manner and

then accelerate in tumorigenesis.116 Mouse models allow us to

more tightly control genetic background and other confounding

variables. We found that in ApcMin/+ intestinal polyps, Polycomb-

associated methylation is almost entirely an age-driven phe-

nomenon, whereas tumor-associated methylation changes are

associated with hypermethylation of enhancers associated

with intestinal differentiation. This tumor model has a strong

germline genetic driver, which may result in less reliance on

epigenetic events in comparison with sporadic human cancers.

Nevertheless, this mouse intestinal tumor model did recapitulate

our earlier finding of loss of methylation in human colorectal can-

cer associated with binding sites for the AP-1 transcription fac-

tor.71 This underscores both the relevance of this mouse model

and the application of this DNA methylation platform.

We demonstrated the suitability of the mouse MM285 array to

establish an epigenetic clock to estimate biological age. Since it

is based on a wide diversity of tissue types, it should be relatively

impervious to the tissue-specific effects encountered with

clocks calibrated using a narrower selection of tissues. The fixed

probe set and the high reproducibility of the methylation mea-

surements provide a convenient and robust avenue to apply

the clock to future datasets produced with this array.

The human Infinium arrays have been adapted to the analysis

of hydroxymethylcytosine,117–119 and we anticipate that this

should be feasible for this array as well. In addition to the study

of DNA methylation itself, we can infer tissue composition, bio-

logical age, genetic background, and sex from the same array

data, further expanding the utility of the Infinium Mouse Methyl-

ation MM285 BeadChip.18,20 These can be used as covariates of

interest in analyses or to account for extra variance, and in turn
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increase power and minimize confounding. In particular, tissue

composition shift has long been raised as a common confounder

in epigenetic studies.120 Many of these covariates can also be

used for examination of possible sample swaps, which can often

occur in large-scale genomic studies. We anticipate that this

mouse MM285 array will rapidly contribute large amounts of

epigenetic data by taking advantage of the powerful mouse ge-

netics31,32 and complementing the extensive phenotype

characterization.92
Limitations of the study
The use of Infinium array technology has inherent limitations.

Only a fixed set of CpGs with designed probes can be assayed

and the assay does not provide allele-specific methylation mea-

surements, nor is it compatible with ultra-low DNA input quanti-

ties, such as single-cell analysis, in its current implementation.121

This study covered a wide swath of analytic approaches to

genomic DNAmethylation. As such, we were limited in the depth

of analysis for each topic. This study is intended as an introduc-

tion to the features and applications of the platform and to pro-

vide a dataset resource so that other studies can delve more

deeply into each topic area.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Patient-derived xenografts (PDXs) Van Andel Research Institute Human Colorectal Cancer PDX models:

VARI PDX-026

VARI PDX-034

VARI PDX-047

VARI PDX-048

VARI PDX-050

VARI PDX-065

VARI PDX-066

VARI PDX-067

VARI PDX-069

VARI PDX-075

VARI PDX-079

VARI PDX-081

VARI PDX-084

VARI PDX-104

VARI PDX-106

VARI PDX-085

VARI PDX-144

Mouse DNA methylation calibration standards EpigenDx Cat# 80-8060M-PreMix

Rat DNA methylation calibration standards EpigenDx Cat# 80-8060R-PreMix

Human blood DNA Bloodbank Anonymous Donor

Chemicals, peptides, and recombinant proteins

2’-deoxy-5-azacytidine (Decitabine, DAC) Sigma-Aldrich A3656

Critical commercial assays

DNeasy Blood & Tissue Kit Qiagen Cat# 69506

AllPrep DNA/RNA Mini Kit Qiagen Cat# 80204

Mouse Methylation BeadChip Illumina Cat# 20041558

Infinium HD FFPE DNA Restore Kit Illumina Cat# WG-321-1002

EZ DNA Methylation Kit Zymo Research Cat# D5001

Deposited data

Raw and analyzed data This paper GEO: GSE184410

Experimental models: Cell lines

Hamster: CHO cells ATCC CRL-11268

Mouse: NIH/3T3 cells ATCC CRL-1658

Mouse: C3H 10T1/2 cells ATCC Clone 8, CCL-226

Mouse: B16 melanoma cells ATCC CRL-6322

Mouse: J1 ES cells and Dnmt1

gene-targeted derivatives

Jaenisch Laboratory,

Whitehead Institute for

Biomedical Research

J1, N/N Cl52, N/N Cl10, S/S

Li et al., 199238

Mouse: Dnmt1 gene-targeted

J1 ES Cells

Jaenisch Laboratory,

Whitehead Institute for

Biomedical Research

J1 C/C

Lei et al., 199649

Mouse: Dnmt1 gene-targeted

J1 ES Cells

Laird Laboratory, University

of Southern California

J1 R/+

Eads et al., 200247

Mouse: Dnmt1 gene-targeted

J1 ES Cells

Laird Laboratory, University

of Southern California

J1 PH/+, P/H

Chan et al., 200148

(Continued on next page)
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Experimental models: Organisms/strains

Mouse: 25 strains The Jackson Laboratory JAX # 002448 129S1/SvlmJ

JAX # 000646 A/J

JAX # 000648 AKR/J

JAX # 000651 Balb/Cj

JAX # 002282 BTBR_T+ ITpr3tf/J

JAX # 000659 C3H/HeJ

JAX # 002020 C57BL/6J

JAX # 000665 C57BL/10J

JAX # 005304 C57BL/6NJ

JAX # 000668 C57L/J

JAX # 000669 C58/J

JAX # 000928 CAST/EiJ

JAX # 000656 CBA/J

JAX # 000670 DBA/1J

JAX # 000671 DBA/2J

JAX # 001800 FVB/NJ

JAX # 002106 KK/HiJ

JAX # 000676 LP/J

JAX # 000550 MOLF/EiJ

JAX # 001976 NOD/ShiLtJ

JAX # 000684 NZB/BINJ

JAX # 002105 NZO/HILtJ

JAX # 001058 NZW/LacJ

JAX # 003715 PWK/PhJ

JAX # 001145 WSB/EiJ

Rat: CD� (Sprague Dawley) IGS Rat Charles River Laboratories Strain Code 001

Software and algorithms

SeSAMe Zhou et al., 201820 https://bioconductor.org/packages/

release/bioc/html/sesame.html

LOLA Sheffield et al., 201675 https://bioconductor.org/packages/

release/bioc/html/LOLA.html

BEDTools Quinlan et al., 2010178 https://github.com/arq5x/bedtools2

Other

Mouse Methylation BeadChip

Manifest and Probe Annotation

This paper http://zwdzwd.github.io/InfiniumAnnotation

Comparison of the Illumina and

SeSAMe probe Manifests

This paper https://github.com/zhou-lab/

InfiniumAnnotationV1/blob/main/Anno/MM285/

MM285.manifest.comparison.tsv.gz

Mouse Genome

ChromHMM Segmentation

Van der Velde et al., 2021 https://www.encodeproject.org/

ENCODE mouse WGBS and human

MethylationEPIC data

ENCODE Project

Consortium et al., 2020

https://www.encodeproject.org/

Ensembl Mouse Gene

Model version 99

Zerbino et al., 2018 https://useast.ensembl.org/

Mus_musculus/Info/Index

Transcription factor binding

sites and histone modification

data from the Cistrome Database

Liu et al., 2011 http://cistrome.org/Cistrome/

Cistrome_Project.html

Mouse strain genetic variation

from The Mouse Genome Project

Keane et al., 2011 https://www.sanger.ac.uk/data/

mouse-genomes-project/

Curation of the mouse array probes

from imprinting control regions

This paper https://github.com/zhou-lab/

ImprintingAnno

176 WGBS datasets ENCODE, GEO 176 Accession numbers

listed in Table S1

H3K27me3 ChIP-seq peaks ENCODE ENCODE accession numbers

listed in Table S7

(Continued on next page)
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Probes used to estimate human/mouse

contribution in PDX data.

This paper Table S6

Genes predicted to escape

X-inactivation based on Mouse

Methylation BeadChip

This paper Table S2

Inbred mouse strain genealogy Beck et al., 2000 https://www.nature.com/

articles/ng0100_23
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Peter W.

Laird (peter.laird@vai.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Infinium Mouse Methylation MM285 BeadChip manifest and annotations (including, gene association, chromatin state association,

imprinting association, SNP-strain association etc.) are available at http://zwdzwd.github.io/InfiniumAnnotation#mouse. The epige-

netic clock and data preprocessing pipelines are available through our R/Bioconductor software SeSAMe (https://bioconductor.org/

packages/release/bioc/html/sesame.html). All DNA methylation data has been uploaded to Gene Expression Omnibus under the

accession GSE184410.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental mice
Mice were housed in an SPF facility with an institute-wide animal care program monitored by an Institutional Animal Care and Use

Committee (IACUC) that adheres to the NIH Guide for Care and Use of Laboratory Animals, and fully accredited by the Council on

Accreditation of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). We used both male and

female mice in this study, and describe the influence of sex on molecular results, where appropriate. Mice were housed in ThorenTM

individually ventilated caging systems on corncob bedding material. All cages were supplied with shredded paper as enrichment.

Water was supplied through an RO/DI automated watering system. Mice were fed LabDiet� 5021 or 5010 ad libitum. Cages were

changed once every 14 days by Vivarium husbandry staff.

METHOD DETAILS

Mouse tissue dissection and processing
Mice were euthanized and autopsied at various timepoints to allow the investigation of age-associated methylation differences. Tis-

sue samples were dissected and snap frozen in liquid nitrogen. Mouse small intestines were processed either as full thickness sam-

ples or by stripping the mucosa. The distinction is annotated in the metadata. Full thickness samples were obtained by resecting the

intestine proximally at the stomach and distally at the cecum. The sample was then incised longitudinally, rinsed, and divided into 10

sections of equal length, and then snap frozen in liquid nitrogen. Stripped mucosal tissue samples from the small intestine were pro-

cessed by incubating the intestinal tissue segments at 37�C for 20 min in 30mM EDTA in HBSS. Following the incubation, samples

were agitated on a vortex for 20 min. Following this, the residual muscularis and basement membrane was removed using forceps.

The samplewas then centrifuged at 400g for 5min. The supernatant was removed and the remaining samplewas snap frozen in liquid

nitrogen. Genomic DNA was extracted from tissue samples using the DNeasy Blood & Tissue Kit (QIAGEN� # 69506) and resus-

pended in 10mM Tris buffer, pH 8.0. A similar procedure was also used to extract genomic DNA from PDX tumor samples stored

in the Van Andel Institute biorepository. PBL were sorted using Beckman Coulter MoFlo Astrios sorter using the following markers:

CD8 T cell (CD8+ CD3+), CD4 T cell (CD4+ CD3+), B cells (CD19+, B220+) and monocytes (CD11b+, SSClo, Ly6G-).

DNA bisulfite conversion, and array hybridization
DNA samples were quantified by Qubit fluorimetry (Life Technologies) and 500 ng each sample was prepared at a concentration of

11.1ng/uL in 45uL of volume for downstream bisulfite conversion. DNA samples were bisulfite converted using the Zymo EZ DNA

Methylation Kit (Zymo Research, Irvine, CA USA) following the manufacturer’s protocol with the specified modifications for the
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Illumina Infinium Methylation Assay. After conversion, the bisulfite-converted DNA was purified using the Zymo-Spin binding

columns and eluted in Tris buffer. Following elution, bisulfite-converted DNA was processed through the Infinium array protocol.

Formalin-Fixed, Paraffin-Embedded (FFPE) tissues were prepared by fixation in 10% formalin for 24 or 48 h, as noted, followed

by DNA extraction and bisulfite conversion. The bisulfite-converted DNA from FFPE samples was first processed using the Infinium

HD FFPE DNA Restore kit workflow. To perform the Infinium assay, converted DNA was denatured with NaOH, amplified, and

hybridized to the Infinium bead chip. An extension reaction was performed using fluorophore-labeled nucleotides per the manufac-

turer’s protocol. Array BeadChips were scanned on the Illumina iScan system to produce IDAT files.

DNA methyltransferase inhibition
C3H/10T1/2 cells (CCL-226) were seeded between the 9th and 15th passage at 2,000 cells/plate in 60 mm TC-treated dishes and

dosed for 24 h with decitabine (200 nM, Sigma-Aldrich, A3656) or mock-treated with solvent (PBS). Cells were observed daily

(24 days) by microscope for muscle formation. Cells were harvested on days 12 and 24 following start of drug treatment for DNA

extraction with the DNeasy Blood and Tissue kit (Qiagen 69504).

QUANTIFICATION AND STATISTICAL ANALYSIS

Probe designability
Successful measurement of CpGmethylation requires each Infinium probe to be uniquely hybridized to the mouse genome with high

biochemical efficiency. Both hybridization and base extension should not be influenced by neighboring SNP or cytosine methylation.

To ensure that all the probe selection conform to these prerequisites, we first developed an inclusion list of all designable CpGs,

referred to as the designability list. For each CpG in the mouse genome, we investigated the two alternative Infinium-I probe design

from the converted strand andmap the probe sequence to themouse genome using BISCUIT alignment software. To ensure unique-

ness, we mapped the 30nt, 35nt, 40nt and the entire probe sequence and consider a probe to be uniquely mappable to the mouse

genome if all subsequences align to the mouse genome with mapping quality greater than 20 for both the methylated (M-allele) and

unmethylated allele (U-allele). 14,809,409 CpGs survived with at least one of the two probe designs passing this test. From this set,

we further filter designs requiring no SNP and no additional CpG (besides the interrogated CpG) within 10nt from the probe’s 3’-end.

For SNP overlap, we retrieved the whole-genome variant calling of 15 in-bred mouse strains (129P2/OlaHsd, 129S1/SvlmJ, 129S5,

A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6NJ, CBA/J, DBA2/J, FVB/NJ, LP/J, NOD/ShiLtJ, NZO/HlLtJ, WSB/EiJ) from the Mouse

Genome Project.122 We excluded SPRET/EiJ, PWK/PhJ and CAST/EiJ from the overlapping analysis due to their divergence from

the laboratory mice, and thus too high SNP density. We further required fewer than six CpGs in the entire probe sequence, to avoid

suboptimal hybridization caused by the variable methylation status at neighboring CpGs. We calculated a 0-1-ranged design score

for each Infinium design to encapsulate its hybridization efficiency as determined by GC content and melting temperature. We only

retain designs over 0.3 in design score. Applying all the above filtering leads to 9768540 CpGs with at least one viable probe design.

CpG probe selection – Genomic features
Promoters

We downloaded 141,767 transcripts for Mus musculus from the Ensembl database release 96.123 For each transcript, we first

collapsed transcripts into 54,376 distinct transcription start sites (TSSs) for protein coding transcripts. For each TSS, we define pro-

moter CpGs as the CpGs within 1,500 bp from both direction of the TSS. We ranked these sites based on their distance to the TSS

and only considered CpG sites in the designable list. When ranked with higher quality sites (score R0.6), lower quality sites (score

<0.6) are given an extra penalty of 500, so that a lower-quality site is only preferred when it is closer to all the high-quality site by over

500bp with respect to their distances to the TSS. From the top of the ranking, we chose at most two CpG sites for each TSS. After

pooling with probes from other design categories, we ultimately included 100,948 CpGs for 54,376 TSSs. This selection leaves 1,972

(3.6%) TSSs not associated with any CpG in the array. We also included CpGs for transcripts of other ‘‘bio-types’’, particularly

lincRNA, pseudogene, and miRNA, as defined in Ensembl. We identified 8,621 unique lincRNA TSS of which 1,327 do not have

an associated CpG in the designability set. We chose at most two CpGs per TSS minimizing the distance to the TSS. A similar se-

lection was performed for pseudogene andmiRNA transcripts, leading to a total of 15,030 lincRNA CpGs, 10,339 pseudogene CpGs

and 4,222 miRNA CpGs. See Figure S1A for a summary of these categories in the final manifest.

Enhancers

We took a multi-step approach to select enhancer probes. We first collected ChromHMM segmentation of the mouse genome from

two prior studies124,125 of mouse embryonic stem cells and eight mouse tissues. We identified all the high-quality probes that overlap

with enhancer segments (both strong and poised enhancers). We then removed probes located within 1 kbp from the TSS of a pro-

tein-coding transcript. Finally, we studied methylation levels of these CpG sites in a compendium of 176 publicly available mouse

DNA methylomes (Table S1). To focus on tissue-specific enhancers, we selected CpG sites observed to be heavily methylated

(>0.7 in methylation level) in over five samples while unmethylated (<0.3 in methylation level) in five samples. We were able to narrow

down to a set of 757,439 CpGs that display such sample-specificity. We randomly chose a subset of 60,000 CpGs resulting in 58,759

CpG probes after infiltering and quality control to represent tissue-specific enhancer elements. We also included 1,247 CpGs

covering enhancers validated in the VISTA database.126
Cell Genomics 2, 100144, July 13, 2022 e4
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CTCF binding sites

CTCF binding scaffolds the 3D chromatin conformation.127 DNA methylation at CTCF binding sites is known to be inversely associ-

ated with CTCF binding.128 We downloaded the CTCF ChIP-seq data from the mouse ENCODE project.129 For evidence of CTCF

binding sites we require a site to meet the following criteria. First the CpG is located inside in CTCF ChIP-seq peaks from at least

two in 19 tissue types.129 The binding peaks were validated with chromHMM segmentation reported by the same previous study.125

We further created a ladder of evenly sampled subgroups of CpGs by their methylation status in a compendium of 176mouseWGBS

datasets (Table S1). We randomly sampled 1,000 CpGs from each bin from the 10 bins of DNAmethylation fraction in the 0-1 interval.

We excluded sites that always exhibited 90-100% methylation in all the samples. This selection strategy yielded 8,616 probes de-

signed to capture the CTCF binding status.

CpG islands

To capture CpG islands, particularly those that are not associated with annotated transcript promoters, we selected one designable

CpG for each CpG island associated with gene promoter and three for each CpG island that are not overlapping with any of the tran-

scription start sites annotated in the mouse Ensembl database (release 96). CpG islands annotations were downloaded from UCSC

genome browser database (mm10). For CpG islands that overlap with transcription start sites, the selection would enhance the rep-

resentation of these CpG-island-associated TSSs. In total, 17,134 CpGs were included to cover 13,365 of the 16,023 CpG islands in

the mouse genome.

Gene bodies

Gene body DNAmethylation is known to be associated with gene expression.50,54 To capture gene bodymethylation, we focused on

canonical protein-coding transcripts defined in RefSeq.130 Gene body regions were defined as genomic intervals spanning from 2 kb

downstream of the TSSs, excluding 5’ CpG islands (as defined by UCSC genome browser) to the transcription termination site. Tran-

scripts that are shorter than 2 kb were excluded. We randomly selected one designable CpG from each transcript. This approach

selects 25,011 CpG sites to target gene bodies. After merging with other design categories, we reached a total of 111,702 non-pro-

moter genic probes in the final manifest. of these, 83,731 CpGs fall into intronic regions, while 403 CpGs are in close proximity to a

splice site (+/- 2 bp).

Transposable elements

Transposable elements (TEs) make up 40% of the mouse genome. TE DNA methylation states are often used to represent genome-

wide DNA methylation levels131 and for tracking developmental stage and tissue of origin.132,133 We downloaded the transposable

element consensus sequence from RepBase.134 We only focused on major rodent-specific repeat families with more than 1000

copies in the mouse genome. We then selected probes to target internal CpGs of these transposable elements using the consensus

sequence. Further restriction by probe design scores reduces to a final inclusion of 4,723 repetitive element probes. Of note, 14

probes in this selection target mouse B1 elements, 242 probes target 18 mouse IAP families, and 423 probes target 100 mouse

L1 transposable element families (including both full-length copies and fragments).

Sex chromosomes

To enablemethylation analysis of the sex chromosomeDNA,we expanded the representation of chromosome X and Ywith a random

sampling of 15,174 chromosome X from the designability list. Due to the suboptimal quality and the high repetitive nature of the Y

chromosome genome sequence, Y chromosomeCpGs are under-represented on the array.We included all designable chromosome

Y CpGs to compensate this underrepresentation leading to a total of 3,780 Y-chromosome CpG probes.

Mitochondrial CpGs

We included 32mitochondrial CpGs. Since mitochondrial DNA is unmethylated due to lack of access to DNAmethyltransferases, we

expect that these CpGs can be used for technical control.

CpG probe selection – Target biology
Imprinted biology and mono-allelic methylation

Unlikemost genomicCpGs, a small fraction ofCpGs tend to be consistentlymono-allelicallymethylated in diverse tissue types, yielding

abetavalueofapproximately0.5. To target imprintedDMR,wecollected26known imprinted regions (Key resources table) and included

661 high-quality CpGs located in these regions. We used the sameWGBS sample compendium (Key resources table, excluding germ

cell samplesandearlyembryonic samples) to identifyconsistently intermediatelymethylatedsites.ChromosomeXCpGswereexcluded

and analyzed separately (see above). We call CpGs as consistently intermediately methylated if the CpG is measured in more than 6

samples and over 65% of the samples shows methylation level between 0.35 to 0.65. Overlapping these CpGs with high-quality

CpGs yields 7,813 CpGs that passed our design criterion. Since the placental tissue is known to have genomic imprinting in a distinct

set of loci, we also selected 981 probes that displayed intermediate methylation level one placenta tissue sample.135

Germ cell and early embryonic development

Global epigenetic remodeling occurs in germ cell and early embryonic development in mammalian species to reset the epigenome

during intergenerational transition.136 This is epitomized by two waves of global loss of methylation in pre-implantation embryo and

primordial germ cells, except for a small subset of CpGs targeting endogenous viral elements.137 In addition, each stage of the re-

modeling could be characterized by a unique DNAmethylation signature.133,138 To capture this biology, we selected CpGs observed

to be either specifically methylated or unmethylated in germ cells, including primordial germ cells,139,140 oocytes141 and spermato-

cytes, zygotes, placenta,142 and multiple early embryo stage samples.143
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Epigenetic clock, aging and cancer

DNA methylation dynamics is known to inform organismal and cellular aging and is implicated in age-associated diseases such as

cancer. It has been used to predict chronological age and biological age in multiple tissues.72 To capture age-associated DNA

methylation change in this array, we analyzed five existing datasets that reported sixmouse arrays75–79 using othermethylation assay

technologies.We included all the 765 CpG sites that had been identified as designable CpG sites from our above analysis. To capture

DNA methylation aberration in cancer, we compared a previously published DNA methylome dataset of two colon cancer samples

induced by Dextran Sulfite Sodium (DSS) and Azoxymethane,144 as well as two colon normal samples.135,144 We identified CpG sites

that are methylated (methylation level >0.7) in the two cancer samples but not in the two normal colon samples (methylation level

<0.3). Only CpGs with sequencing depth greater than 6 reads in all the samples were considered. This analysis leads to 8,330

CpG sites included in the design for association with colon cancer-specific methylation changes. Our previous studies suggested

that CpGs that are relatively isolated and are flanked byC/G (the so-called solo-WCGWCpGs) in the late replicated genomic territory,

also known as partially methylated domains (PMDs), are more likely to lose methylation during mitotic cell division.145–147 Solo-

WCGWCpGs are defined by CpGs flanked by a C or G and without additional CpGs in the flanking sequences 35bp in length, a dis-

tance shown to be most predictive of methylation alteration during cellular aging. The annotation of common PMDs was obtained

from our previous study.145 To further confirm that these regions are late in DNA replication, we used nuclear lamina-associated do-

mains determined in a previous study148 as surrogates. We included 5,095 randomly chosen solo-WCGW PMD CpGs.

Metastable epi-alleles, variably methylated regions

Variation in DNA methylation at endogenous retroviruses such as IAP can cause inter-individual and potentially trans-generational

epigenetic inheritance.57–59 These variably methylated CpG sites have the potential to function as a sensor of the environment and

have been implicated in obesity susceptibility.149 We collected 6,402 VM-IAP regions from a prior study56 and included one CpG

site for each of the VM-IAP, yielding 5,849 probes targeting this category. 633 regions were left out due to lack of designable CpGs.

Human-mouse synteny

We started by projecting human probes already included in the HumanMethylation EPIC arrays150 to mouse using the UCSC LiftOver

utility.151,152 29,054 of the EPIC CpGsmap to designable CpGs in the mouse genome. Of these, 28,719 syntenic CpGsmap uniquely

in both the human and mouse genome. Note that the human CpG and the syntenic mouse CpG are not necessarily queried using the

same probe design. These CpGs may have different flanking sequence in the two species and hence different probe sequences. We

labeled each probe as well as their associated syntenic human EPIC array probe. Because the human EPIC array enriches for gene

promoters which are generally more conserved than rest of the genome, we also observe an enrichment of promoter probes for this

category.

CpG probe selection – Random selection
We added 28,011 randomly selected designable CpG sites with the intent of covering uncharacterized biology and sex chromo-

somes which are otherwise under-represented.

CpH and SNPs
Non-CpG cytosines (CpHs)

Non-CpG cytosine methylation has been found to be implicated in modulating gene expression in human tissues.153 We included

2,310 CpH sites evenly distributed by sequence context to the CpA, CpC and CpT groups. Half of these CpH sites were chosen

for beingmethylated in themouse brain tissue based on a previousWGBS study.61 The other half of the CpHswere randomly chosen.

Like CpG probes, all the CpH probes were quality controlled by requiring a unique mapping of the probe sequence to the bisulfite-

converted mouse genome and having a high design quality score.

Strain-specific SNPs

The inclusion of strain-specific probes will allow the investigator to assess or verify the genetic background and lineage composition

of inbred mice. We studied currently available whole-genome sequence data of 36 inbred and wild mouse strains from the Mouse

Genome Project.122 We curated the lineage history (Figure 6A) of these strains by adapting the known lineage history.154We selected

at most ten representative SNPs from each branch of this phylogeny, with some SNPs queried using multiple design variants. We

excluded repetitive elements (as marked in RepeatMasker)155 and sites with no additional SNP within 25 base pairs and no CpG

within 30 base pairs. This leads to a list of 1,485 SNP probes included in the designed mouse methylation array to target 591

branch-specific SNPs.

The basic parameters of the mouse methylation array

The mouse array is approximately half the size of the HM450 array (Figure S1B). It covers 1.3% of the mouse genomic CpGs, a ratio

slightly lower than the HM450 array. The Basic Parameters of the Mouse Methylation Array: 95.8% of the probes on the mouse array

are CpG probes. The rest are CpH, SNP, control probes and probes that did not pass quality control. Compared to the two previous

generations of the human arrays, the mouse array included fewer CpGs and slightly fewer CpH probes (Figure S1C). It includes more

SNP probes and control probes. 4,541 probes that do not meet design objective (sequence mismatches and suboptimal hybridiza-

tion performance, representing probes with uk in the probe name prefix) were also exposed to the users. In our default SeSAMe pro-

cessing pipeline, these probes were masked with NA. The masking can be optionally removed. The total number of probes sums up

to 296,070.
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We have previously shown that the out-of-band fluorescence color channel can capture background signal better than the internal

negative control probes, constituting an effective data normalization strategy for background subtraction99 and detection p value

calibration.20 Probes designed with Infinium-I chemistry provide 61,873 out-of-band signals for these applications (Figure S1D).

The mouse array also contains 2,874 control probes, including negative control probes and bisulfite conversion control probes

(Figure S1E).

The mouse array contains a small fraction of probes targeting the replicated daughter strand, as opposed to the parent bisulfite

converted strand, which is an innovation compared to the human Infinium arrays (Figure S1F). This provides additional design flex-

ibility to cover challenging genomic regions.

Most probes can be mapped uniquely to the mouse genome (Figure S1G). A small fraction of 7,364 CpG probes were intentionally

designed to target multiple regions. The default setting for our SeSAMe processing pipeline20 masks 4,541 probes that do not meet

design objectives (sequence mismatches and suboptimal hybridization performance), but this masking can be optionally removed

(Figure S1G right panel).

We havemapped themousemethylation probes to both themm10 andmm39 genome builds, as represented in a confusionmatrix

in Figure S1H.

Unlike the human array in which all probes were designed to target a single CpG, the mouse array provided design redundancy for

a small fraction of CpGs and SNPs (Figure S1I). This allows us to investigate variation between different designs. To reflect the probe

design redundancy, we expanded the probe ID systemwith a four-letter suffix to accommodate information needed to uniquely iden-

tify a probe (Figure S2A). The suffix captures information of whether the read is designed against top or bottom strand of the 122-mer

template DNA,whether the design is targeting converted or the synthesized (opposite) strand, whether the probe is of the Infinium-I or

Infinium-II chemistry and finally an integer enumerating different replicate of the same probe.

Infinium BeadChip data preprocessing
Mouse array IDATs were preprocessed using SeSAMe.20 We first calculated detection p values for each probe using the pOOBAH

algorithm.20 We then performed background subtraction using the noob method,99 followed by a dye bias correction using the dye-

BiasCorrTypeINorm function provided in the SeSAMe package. Signal intensities were then summarized into beta values using the

getBetas function, with multimapping probes and probes with insignificant detection p value masked (p > 0.2). We investigated

probes with detection p value between 0.01 and 0.2 using cross-validation and found them largely reflecting true biological methyl-

ation signal.

Sex-specific methylation differences on X Chromosomes
To identify the methylation difference between active and inactive X chromosome in female cells, we studied the methylation differ-

ence betweenmale and female samples. Sincemale samples have one active Xwhile female cells have both an active and an inactive

X chromosome, variation in female DNA methylation compared to male tissues reflects the difference of inactive X chromosome

methylation compared to active X.We performed a linear regression of DNAmethylation on tissue type, sex and strain and calculated

the slope coefficients of sex-specific effect of the methylation of X-linked CpGs, which is equivalent to the sex-specific methylation

difference depicted in Figure 3C. Most CpG island CpGs display hypermethylation in the females while CpGs located in inactive-X-

specific long-non-coding RNAs are hypomethylated in females (Figure 3C). We identified 6 genes covered by the MM285 array pre-

dicted to escape X-inactivation55 (Table S2).

Imprinting-associated and mono-allelic methylation
Using criteria of different degrees of stringency, we identified four groups CpGs potentially involved in mono-allelic methylation.

Group I includes CpGs frequently (>50%) found to be intermediately methylated (beta >0.3 and beta <0.7) across 138 somatic tissue

samples. Group II further requires the CpGs to be intermediately methylated in over 90% of the samples and of full (>0.7) or no

methylation (<0.3) in the three testis samples which are largely composed of spermatocytes. Group III and Group IV requires the

CpGs to be located at annotated imprinting control regions (ICRs) or secondary DMRs (sDMRs), or just ICRs only, respectively.

The imprinting control regions were retrieved from previous studies.156–170

CTCF binding site methylation
CTCF binding sites were retrieved from 11 primary tissue data from ENCODE (Table S3). CTCF motif scanning was done within the

peak sequence using FIMO171 and JASPARmotif MA0139.1.172Methylation signals are then aligned with respect to the start position

of the CTCF motifs. We further filtered CTCF binding sites with more than 0.2 in methylation level in all the tissues within 100bp win-

dow flanking the CTCF motif. This results in 5,449 CTCF binding sites left for analysis (Table S4).

Tissue-specific hyper- and hypomethylation signatures
We used a one-vs-rest approach to identify CpGs uniquely hypo- or hypermethylated in each tissue. We first computed the area un-

der the curve (AUC) for discriminating the target tissue from tissues of other tissue types. We considered probes capable of perfectly

discriminating the target tissue from the rest. We then ordered the probes by comparing the target tissue and the other tissues in DNA

methylation. The top 200 probes in the methylation difference were regarded as tissue methylation signatures. The signatures were
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then inspected for enrichment with transcription factor binding. Each signature CpG set was studied for its overlap with transcription

factor binding sites retrieved from the Cistrome database.66 The statistical significance of the overlap was evaluated using Fisher’s

exact test. To investigate the interaction of multiple DNAmethylation-determining factors, we performedmultiple multivariate regres-

sion173 of DNA methylation on four predictors, i.e., tissue, strain, sex and age, using 467 non-tumor samples using the DML function

in the SeSAMe package.20 For each predictor, we performed an F-test and considered probes with a p-value smaller than 0.05 and

effect size (delta beta value) greater than 0.1 as differentially methylated CpGs.

Mapping the mouse array probes to other species
We collected 310 Ensembl (version 101)123 whole genome sequences. Each sequence was indexed for bisulfite read alignment using

BISCUIT tolerating one mismatch. For Infinium-I probes, allele A and allele B were mapped separately to the genome. The mapping

positions were evaluated for consistency between the two alleles. Extension base was checked for targeting CpG methylation

measurement. Phylogenetic trees were retrieved from NCBI taxonomy. We filtered and plotted 56 species in Figure 5A including

12 muroida, 11 other rodentia, 8 primates, 9 other mammals, 13 other vertebrates and 3 invertebrates.

Human-mouse comparison
To investigate human-mouse epigenetic conservation, we collected 33 datasets with 8 tissues in humans, matching the 41 tissue

datasets in mouse from ENCODE and other previous studies (Table S5). We merged DNA methylation measurements on the

28,719 syntenic CpGs with unique mappings in both species interrogated using EPIC and the mouse array independently. We

performed a linear regression analysis of the DNA methylation measurements on both species and tissue types, allowing for sta-

tistical interaction of the two factors. To define tissue- and species-specific methylation, we first calculated the mean methylation

for each combination of tissue and species using multivariate regression. The tissue-specific methylation effect was defined as the

maximum methylation mean subtracted by minimum methylation mean across different tissue levels (regardless of species). Like-

wise, the species-specific methylation effect was defined as the maximum methylation mean subtracted by the minimum methyl-

ation mean between the two species (regardless of tissue). Figure S6E plots the tissue- (X axis) and species-methylation effect (Y

axis) of the 28,719 syntenic CpGs. CpGs with tissue-specific effect >0.4 and tissue/specific >3 are colored blue. Likewise, CpGs

with species-specific effect >0.4 and species/tissue-specific effect >3 are colored red. The two may match in the cases of

statistical interaction. High density of data points on the diagonal line in Figure S6E suggests extensive interaction of tissue-

and species-specific effect.

Estimation of the relative contributions of human and mouse DNA in patient-derived tumor xenografts (PDXs)
We developed two different methods to quantify the relative contributions of human and mouse in a mixed DNA sample. The first

method uses 19 human-mouse syntenic Infinium-I probes with single-nucleotide variations at the extension bases between human

andmouse (Table S6). These probes emit signals in one fluorescent color channel when hybridized to humanDNA and the other when

hybridized tomouse DNA.We calculated the ratio of the signal from the color channel corresponding to the human allele to the sumof

the signals from both color channels [Human/(Human + Mouse)] for each probe. We then took the median of the ratios from the 19

probes. In the second method, we ran the same DNA samples on the mouse and human (EPIC) arrays and analyzed 259,626 and

733,164 non-syntenic probes in the mouse and human arrays, respectively. We calculated the ratio of the median total signal inten-

sities from the human array over the sum of median total signal intensities from the human and mouse arrays [Human/(Human +

Mouse)] in a sample. To create a standard curve, we extractedmouse DNA from fat and spleen tissues andmixed themwith different

proportions (0, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 0.85, 0.9, 0.95 and 1) of human blood DNA.We fitted LOESS curves between the signal

ratios [Human/(Human + Mouse)] and the known proportions of human DNA (Figures S6F and S6G). We generated the standard

curve for each method based on the mean of the two LOESS fitted values from the fat and spleen DNA (Figures S6H and S6I)

and used them to estimate human DNA fraction in 17 colorectal cancer PDXs (Figure 5G).

Analysis of age- and tumor-associated DNA methylation
We analyzed DNA methylation profiles in small intestinal tumors and tumor-adjacent small intestinal mucosa excised from ApcMin/+

mice. We examined DNAmethylation levels at the Mir200c promoter, which is methylated in mesenchymal cells but unmethylated in

epithelial cells, to select 56 tumors and 13 normal tissues consisting primarily of epithelial cells (beta value < 0.2) (See Figure 4E). We

excluded probes designed for X and Y chromosomes and having missing data in more than 25% of the samples. We further filtered

out probes constitutively unmethylated (maximumbeta value < 0.2) or constitutively methylated (minimum beta value > 0.8) across all

samples. The remaining 92,738 probes were used in further analysis. Multivariate linear regression was used at the probe level to

identify CpG sites that showedDNAmethylation changes associatedwith age or tumor after adjusting formouse strains. The p values

were corrected for multiple comparisons using the Benjamini-Hochberg method. Probes showing tumor-associated methylation

changes were selected based on the adjusted p value <0.01 and absolute coefficient value for tumor >0.1, with positive and negative

coefficients indicating hypermethylation (n = 4,429) and hypomethylation (n = 3,398), respectively. Similarly, age-associated methyl-

ation changes were defined as having adjusted p value <0.01 with the signs of the coefficient for age specifying either hypermethy-

lation (n = 3,585) or hypomethylation (n = 990). Probes located in the PcG target sites (Figure 7A) were determined using H3K27me3

ChIP-seq replicated peaks on postnatal 0-day mouse intestine downloaded from the Gene Expression Omnibus (GEO) under
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accession GSE82655.67 To examine transcription factors that bind to the CpG sites subjected to age- or tumor-associated DNA

methylation changes, we analyzed 9,066 ChIP-seq data on 704 individual DNA binding factors curated in the Cistrome Data Browser

(DB).174 The statistical significance of enrichment for transcription factor binding sites among different groups of CpGs was deter-

mined using Fisher exact test with 200bp regions centered on the target CpGs using the R package LOLA.175 p-values were adjusted

for multiple comparisons using the Benjamini-Hochberg method.

Putative Cdx2, Hnf4a, and Hnf4g enhancer target genes affected by tumor-associated DNA hypermethylation
We identified 1,295 significantly hypermethylated CpGs overlapping the binding sites for at least one of the intestine-specific tran-

scription factors, Cdx2, Hnf4a, and Hnf4g. To gain a better insight into the impact of tumor-associated DNA hypermethylation at

these sites, we investigated putative target genes of these transcription factors. We collected the regulatory potential (RP) scores

calculated in Cistrome DB, which were assigned to each RefSeq gene and reflect its likelihood of being regulated by a particular fac-

tor.174 We considered at most ten nearest genes within 1,000kb upstream and ten nearest genes within 1,000kb downstream from

the CpG sites. We then investigated the list of genes with RP scores above 2 in at least one ChIP-Seq data for all three transcription

factors. GO terms over-representation analysis was performed using the enrichGO function with default parameters as implemented

in the R package clusterProfiler.176

Construction of epigenetic clocks
The elastic-net regularized linear model was built using glmnet.177 To select most predictive CpGs, we set alpha to 0.5 and lambda to

0.098, selected using the cv.glmnet function which automatically optimizes the mean absolute error of the model using 10-fold cross

validation. This procedure leads to an epigenetic clock composed of 347 CpG probes with an estimated mean absolute error of

1.19 months. For testing the enrichment of polycomb-targeted CpGs, we downloaded 77H3K27me3 ChIP-seq narrow peaks

from ENCODE (Table S7) and identified genomic CpGs that overlaps with each peak. We used Fisher exact test to evaluate the sta-

tistical significance of the overlap between the 347 clock CpGs and genomic CpGs associated with H3K27me3. The annotation for

the 347 probes, along with their weights, have been incorporated into the current version of SeSAMe.
e9 Cell Genomics 2, 100144, July 13, 2022
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Figure S1. Mouse DNA Methylation BeadArray Content, Related to Figure 1. (A) Design 
categories of the mouse Infinium BeadChip array. (B) Comparison of three Infinium methylation 
BeadChips in the number of targeted CpGs. (C) Number of probes with different targets in HM450, 
EPIC, and mouse arrays. (D) Number of Infinium-I vs Infinium-II comparing HM450, EPIC, and 
mouse arrays. (E) Control probes and their design categories in the Infinium Mouse Methylation 
Beadchip. (F) Comparison of the mouse array with HM450 and EPIC array in terms of converted 
vs synthesized strand probe design. (G) Comparison of the mouse array with HM450 and EPIC 
array in probe mappability. (H) Summary of the mouse array probes mapped to mm10 vs mm39. 
(I) Probe redundancy for the mouse methylation BeadChip probes.  
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Figure S2. Mouse DNA Methylation BeadArray Probe Design and Reproducibility, Related 
to Figure 1. (A) Mouse array probe ID system illustration. (B) Enrichment of design category with 
chromatin state. The enrichment is consistent with the design objective with most of the TSS, CGI 
probes enriching for Tss chromatin state with the other probes largely falling into quiescent 
chromatin and heterochromatin. (C) Mouse array probe distribution in different chromatin states 
from different tissue types. (D) Circus plot showing distribution of mouse array-targeted CpGs in 
the mouse genome. (E) Boxplot showing pairwise Pearson’s correlation coefficients within the 
same lab (left) and between different labs (right) (F) Left: Probe success rate boxplot comparing 
fresh frozen (FF) samples and Formalin-fixed and Paraffin-Embedded (FFPE) samples treated 
for 24 and 48 hours. Right: Boxplot showing pairwise correlation coefficient between FF and FFPE 
samples and between FFPE 24h and 48h samples.  
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Figure S3. Experimental and Biological Validation of DNA Methylation, Related to Figure 2. 
(A) Line plot showing mean DNA methylation level across CpGs in different primary tissue 
samples from mice with different Dnmt1 genotypes (X-axis). Each dot represents the median 
methylation level across samples of the same tissue type (color). (B) Retention of methylation in 
tissues from Dnmt1N/R mice at 6,022 CpGs that are fully methylated across all tissues in Dnmt1+/+ 
mice. (C) DNA methylation level reduction in Dnmt1N/R mice compared to the wild-type mice, 
contrasting CpGs of different chromatin states (as characterized by chromHMM) and design 
categories (X-axis). The top panel shows the methylation level difference between mice of the 
two genotypes. The low panel shows the actual mean methylation fraction of CpGs in each 
category. (D) Distribution of Solo-WCpGW methylation in mouse colon and testis tissues 
comparing tissue type, sex, and four Dnmt1 genotypes. Dots represent the mean solo-WCGW 
methylation level. The wedge indicates the expected trend of DNA methylation level change. 
(E) Methylation level distribution of X-linked CpGs in colon samples from male and female mice 
and testis samples from male mice. CpGs are stratified by whether they are part of a CpG island 
and whether the associated gene (+- 3kb of the gene body) is predicted to escape from X 
chromosome inactivation (XCI) (Yang et al., 2010). 
 
Reference: 
Yang, F., Babak, T., Shendure, J., and Disteche, C.M. (2010). Global survey of escape from X 
inactivation by RNA-sequencing in mouse. Genome Res 20, 614-622. 10.1101/gr.103200.109. 
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Figure S4. DNA Methylation Analysis of Genomic Features and Regions, Related to Figure 
3. (A) Genomic distribution of DNA methylation levels centered on autosomal lncRNAs and 
miRNAs. The density of CpGs (top row), the density of probes designed for the MM285 array 
(middle row), and the average methylation level of samples stratified by tissue type (bottom row) 
are shown accordingly. (B) Methylation level of CpGs associated with the Igf2/H19 imprinting 
region. (C) Overlap of four different groups of potential mono-allelic methylation-associated CpGs 
on the mouse methylation array. Two groups (Group I and II) are based on evidence of consistent 
intermediate methylation across 138 somatic tissue samples. Group I probes require consistent 
intermediate methylation in over 50% of the samples (methylation level between 0.3 and 0.7), 
while Group II requires intermediate methylation in over 90% samples and fully methylated and 
unmethylated in three testis samples. Sex-chromosome probes are excluded. Group III is 
imprinting-associated probes designed based on genomic proximity, and Group IV is based on 
localization of CpG at 13 manually curated imprinting control regions. Probe sets boxed in white 
are used in the downstream analysis shown in this paper. (D) Scatter plot contrasting beta values 
against age in month in 10 ICR probes most associated with age. (E) A heatmap showing DNA 
methylation level of CpGs (rows) from 13 imprinting control regions in the mouse cell lines, 
including the J1 embryonic stem cells and the C3H 10T1/2 cells of different Dnmt1 genotypes 
with or without DAC treatment. CpGs are ordered by genomic coordinates. The associated 
imprinting region is labeled on the right. (F) Table of the VMR (Variably Methylated Region) probe 
representation in CpGs for which the methylation level is influenced by strain, tissue, sex, or age 
(1 indicating an influence, 0 indicating no influence for that covariate). (G) Boxplots showing the 
distribution of the DNA methylation level variance (left panel) and the mean beta value (right 
panel) of VMR probes compared to non-VMR probes across 7 B-Cell samples (left panel). VMR 
probes have significantly higher variance  and mean beta value compared to non-VMR probes 
(both P values < 2.2*10-16, Wilcoxon rank-sum test). 
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Figure S5. Tissue-Specific DNA Methylation, Related to Figure 4. (A) tSNE cluster map of 
mouse methylomes colored by tissue, sex, experiment group, strain, cell line state, age, and mean 
methylation level globally and at Polycomb target genes. (B) Uncertainty coefficients of six 
different sample meta variable predicting DNA methylation-based sample clustering membership. 
Uncertainty coefficient quantifies the fraction of total information in sample clustering predicted by 
a random discrete variable. (C) Matrix representing hierarchical clustering of pairwise Spearman 
correlation coefficients of global methylomes of 246 samples representing 22 different tissue 
types. (D) Transcription factors enriched in tissue-specific hypomethylation with odds ratio of 
enrichment shown on the Y-axis and the number of overlapping probes shown on the X-axis. (E) 
Transcription factors enriched in tissue-specific hypermethylation with odds ratio of enrichment 
shown on the Y-axis and the number of overlapping probes shown on the X-axis. (F) Heatmap of 
DNA methylation level using tissue-specific probes (rows) in Dnmt1 hypomorphic mice (columns).  
  



A E

G

B

F

D

HC I

Supplemental Figure S6 - Related to Figure 5



 
 
Figure S6. Comparative Epigenomics and Species-Specific Methylation, Related to Figure 
5. (A) 4-way Venn diagram showing the predicted probe functionality in human, mouse, rat and 
hamster genomes. Validation of the mean signal intensity of probes from different sequence-
based utility categories for human, hamster, rat, and mouse DNA. Probes are classified by 
whether they are functional in human, hamster, and rat. Probes are always functional in mouse 
by design. Strong signal is only observed when the probe category is predicted to work in the 
corresponding species. (B) Enrichment of evolutionarily conserved probes in each design group. 
Evolutionary conservation is defined by having 60-way PhastCons score greater than 0.8. X-axis 
plots log2 fold enrichment compared to background probe fraction on the array. Log2 fold 
enrichment is capped at -4 from the bottom. (C) A Heatmap showing the significance (p-value) 
distinguishing different factors (rows). Wilcoxon rank sum test was used to evaluate the 
significance of the difference. For tissue, we performed a one-vs-rest pairwise comparison. 
Percentage of variance explained is shown on top of the heatmap. PC1 is entirely linked to 
species, while the other PCs are by tissue or a combination of tissue and species. (D) Heatmap 
showing the pairwise Spearman’s correlation coefficients of 8 human (rows) and 8 mouse tissues 
(columns). (E) A scatter plot showing the magnitude of tissue-associated variation (X-axis) and 
species-associated variation (Y-axis) in DNA methylation for each human- mouse syntenic probe 
(dot). Tissue-specific CpGs (Blue) are defined as probes with delta beta value (regression slope, 
tissue) > 0.4, delta beta value (tissue) / delta beta value (regression slope, species) > 0.3. 
Species-specific CpGs (Red) are defined as probes with delta beta value (species) > 0.4, delta 
beta value (species) / delta beta value (tissue) > 0.3. (F and G) LOESS curves fitted between the 
signal ratios (Y-axis) and the known proportions of human blood DNA mixed in mouse fat (light 
gold) or spleen (red) DNA samples (X-axis). The signal ratios were calculated using (F) the 19 
syntenic probes with SNVs at the extension bases between human and mouse and (G) the non-
syntenic probes in the mouse (n=259,626) and human (n=733,164) arrays. (H and I) Standard 
curves derived using the mean of the two LOESS fitted values from the fat and spleen DNA for 
the two methods based on (H) the syntenic human-mouse variant probes and (I) the non-syntenic 
probes in the mouse and human arrays. 
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Figure S7. Age-Associated Methylation and Epigenetic Clock, Related to Figures 6 and 7. 
(A) Heatmap showing the likelihood of samples (columns) being predicted to candidate strains 
(rows) using strain-specific SNPs. (B) Distribution of age effect for each probe used in the 
epigenetic clock, showing roughly equal representation of clock CpGs that gain and lose 
methylation with age. (C) Enrichment of clock CpGs in H3K27me3-marked chromatin. X-axis 
shows odds ratio and y-axis shows p-value of enrichment. Each dot represents an ENCODE 
H3K27me3 dataset of a distinct tissue type (color). (D) Boxplot showing the distribution of age 
prediction error stratified by tissue. The figure shows the error is largely unbiased and tissue 
invariant except for testis for which age tends to be over-estimated.  
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