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Abstract 

The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the 
standard w orkflo w requires o v er 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. 
We de v eloped e xperimental and analy sis w orkflo ws to e xtend this technology to suboptimal input DNA conditions, including ultra-lo w input 
down to single cells. DNA preamplification significantly enhanced detection rates to o v er 50% in five-cell samples and ∼25% in single cells. 
Enzymatic con v ersion also substantially impro v ed dat a qualit y. Comput ationally, w e de v eloped a method to model the background signal’s 
influence on the DNA meth ylation le v el readings. T he modified detection P -v alue calculation achie v ed higher sensitivities f or lo w-input datasets 
and w as v alidated in o v er 10 0 0 0 0 public diverse methylome profiles. We employed the optimized workflow to query the demethylation dynamics 
in mouse primordial germ cells a v ailable at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of 
DNA methylation in transposable element regulation during germ cell de v elopment. Collectiv ely, w e present comprehensiv e e xperimental and 
computational solutions to extend this widely used methylation assay technology to applications with limited DNA. 

Gr aphical abstr act 

Introduction 

DNA modifications, including 5-methylcytosines (5mCs) and 

5-hydroxymethylcytosines (5hmCs), are canonical forms of 
epigenetic modification in human and other mammalian 

genomes. DNA methylation is found mainly in CpG dinu- 
cleotide contexts, where it is extensively implicated in gene 
transcriptional regulation, cell identity maintenance, organ- 
ismal development, aging, and diseases ( 1 ). Infinium DNA 

methylation BeadChips are among the most popular genome- 
wide methylation assays in humans and other species due to 

the ease of experiment and data analysis ( 2 ). These arrays 
have been the primary data generation workhorse for large 
data consortia such as The Cancer Genome Atlas (TCGA), 

with public methylome profiles of over 80 000 HM450 sam- 
ples ( 3 ) and a similar number of EPIC array methylome pro- 
files deposited to Gene Expression Omnibus (GEO). While the 
adoption of sequencing-based methods is catching up in case 
and mechanistic studies, the Infinium technology remains the 
most used assay platform for population-level studies such as 
meQTL studies ( 4 ,5 ), epigenetic risk scores ( 6 ,7 ), and other 
epigenome-wide association studies ( 8 ,9 ). This is, in part, due 
to the necessity in population studies to cover a large num- 
ber of samples with nuanced variation in methylation levels 
and to dissect multiple cohort covariates such as sex, age, ge- 
netic background, and tissue type. In addition to being a pow- 
erful and popular tool for biological discovery, the technology 
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has recently enabled rapid clinical application development 
( 10 ). This platform has found wide success in cancer diag- 
nosis ( 11 ), cell-free liquid biopsy ( 12 ), and forensics ( 13 ). Re- 
cently, the Infinium BeadChips have also been used to generate 
the largest DNA methylome atlas across different mammalian 

species ( 14–16 ). 
Despite these successes, a significant drawback of this tech- 

nology is that it requires over 200 ng of input DNA from the 
standard processing protocol ( 2 ). This requirement constrains 
scientific and clinical applications with limited DNA availabil- 
ity. For example, as few as 25 primordial germ cells (PGCs) 
can be found in the early mouse embryo ( 17 ). Serum-derived, 
tumor-originated cell-free DNA (cfDNA) in cancer patients 
( 18 ) holds value in non-invasive early cancer diagnosis ( 19 ). 
But as little as five ng / ml cfDNA in healthy subjects and 30 

ng / ml in cancer patients ( 20 ) may be available. Also, DNA 

obtained from crime scene traces are often in the picogram 

to nanogram range ( 21 ). The DNA concentrations obtained 

from these tissues are much lower than the Infinium array 
standard protocol requires. 

In addition to circumstances where the input DNA quan- 
tity is limited, it may be of interest to study a complex tissue 
to dissect cell-to-cell heterogeneity purposefully, even when 

there is no shortage of total DNA in the tissue. DNA methy- 
lation encodes distinctive cell identity fingerprints, which can 

be used to infer cellular phenotypes ( 1 ), trace the state of the 
DNA-releasing cells ( 22 ), and infer cell proportions ( 23 ). By 
performing DNA methylation analysis on laser-capture mi- 
crodissected specimens, one can compare methylomes at dif- 
ferent locations in tumors ( 24 ,25 ) or select specific cell types 
from the brain for analysis ( 26 ). In most cases, laser-capture 
microdissected tissues are limited in quantity and involve 
pre-assay whole genome amplification, as is done with SNP 

arrays ( 27 ). 
The extreme of increasing the cell resolution at the cost 

of working with small DNA amounts is epitomized by the 
rapid development of single-cell DNA methylome assay tech- 
nologies ( 28 ). Each human or mouse cell carries 5–7 pg. In 

the past decade, most technologies have been based on pre- 
amplifying deaminated DNA ( 29–31 ) using random prim- 
ing or single-strand adapter ligation before feeding amplified 

DNA to high-throughput sequencing. In addition, multiple en- 
zymatic cytosine conversion methods have been developed to 

replace sodium bisulfite conversion to better preserve genomic 
DNA during library preparation ( 32 ). Inspired by these single- 
cell methods, we posit that similar preamplification meth- 
ods and enzymatic conversion can also be used with Infinium 

arrays. 
Besides the experimental challenges, current computational 

methods are not fully optimized for low-input DNA data. Cur- 
rent signal preprocessing practices may lead to low probe sig- 
nal detection rates and probe over-masking. Signal detection 

has traditionally been determined by comparing probes’ signal 
intensities with negative control probes ( 33 ) or readings in the 
Infinium-I out-of-band channel ( 34 ). A conservative threshold 

of the detection P -value was then determined to mask low- 
intensity probes. When the foreground and background sig- 
nal intensities are separable, using a conservative threshold on 

high-input data would not harm detection sensitivity. This ap- 
proach leads to a significant loss of true biological signals for 
limited DNA input. A method that maximally preserves bio- 
logical signals while removing pure artifacts remains an unmet 
need. 

Here, we systematically developed and evaluated experi- 
mental and computational methods to improve array sensitiv- 
ity at low-input ranges and single cells. Our evaluation encom- 
passes previously attempted adaptations, including using dif- 
ferent bisulfite conversion elution ( 35 ), using Formalin-Fixed 

Paraffin-Embedded (FFPE) restoration ( 36 ), combining bisul- 
fite conversion with DNA extraction ( 37 ) as well as methods 
that were never previously used with Infinium arrays, such 

as the enzymatic conversion and different preamplification 

strategies. We developed a new signal detection framework 

to address the computational challenge of processing data 
from limited DNA. We showed that this new method signifi- 
cantly improved array detection rates while effectively mask- 
ing probes whose readings are dominated by background sig- 
nals. We showed that the Infinium BeadChip is compatible 
with samples of low input down to single cells. And we pre- 
sented end-to-end solutions to enable this technology for low- 
input and single-cell samples. 

Materials and methods 

Cell cultures 

NIH3T3 (ATCC, CRL-1658) was obtained from Amer- 
ican Type Culture Collection (ATCC) and cultured in 

DMEM (ATCC, 30-2002) containing 10% Calf Bovine Serum 

(ATCC, 30-2030) and 1% penicillin / streptomycin (Gibco, 
15140122). B16-F0 (ATCC, CRL-6322) was obtained from 

ATCC and cultured in DMEM (ATCC, 30-2002) contain- 
ing 10% Fetal Bovine Serum (Gibco, 45000-736) and 1% 

penicillin / streptomycin (Gibco, 15140122). All cells were 
maintained in a 37 

◦C incubator with 5% CO 2 and cultured 

in a 75 cm 

2 culture flask (Fisher, BD353136). 

Cell flow sorting 

5 × 10 

6 cell pellets of the NIH3T3 and the B16-F0 were 
resuspended in 50 μl of 0.1 μg / 1 ml of 4,6-diamidino-2- 
phenylindole (DAPI) (Sigma-Aldrich, D9542-5MG) in 1 ml of 
phosphate-buffered saline (PBS) (Life Technology, 10010023). 
Cells were filtered by a Falcon Cell Strainer Snap Cap (Falcon, 
352235). DAPI-negative cells (1, 2, 5, 10 and 100 cells) from 

NIH3T3 and B16-F0 were sorted and collected into 96-well 
plates pre-loaded with 10 μl of 1 × M-Digestion Buffer (Zymo 

Research, D5020-9) using a BD FACSAria™ Fusion cell sorter 
(BD Biosciences) with a 100 μm nozzle. 

Mouse primordial germ cells 

Gonads from embryonic Oct4-GFP transgenic mice 
(B6;129S4- Pou5f1 

tm2Jae / J; Jackson Laboratory, strain 

#008214 ,RRID: IMSR_JAX:008214) were harvested at 
embryonic day E11.5, E12.5, E13.5, and E14.5 ( 38 ). Gonads 
were dissected in calcium- and magnesium-free PBS (Gibco) 
and transferred into 500 μl of 0.25% Trypsin–EDTA (Gibco). 
Subsequently, the preparation of embryonic germ cells was 
carried out following the method previously described ( 39 ). 
For bisulfite mutagenesis, PGCs were snap-frozen for storage 
at –80 

◦C until further processing. 

DNA extraction and bisulfite conversion 

NIH3T3 and B16-F0 cells were harvested by centrifuga- 
tion at 100g for 5 min at room temperature and washed 

twice using PBS (Gibco, 10010023). The DNeasy Blood and 

https://scicrunch.org/resolver/RRID:
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Tissue Kit (Qiagen, 69504) was used to extract genomic DNA 

from NIH3T3 and B16, according to the manufacturer’s pro- 
tocol. DNA samples were quantified using Qubit 4.0 Fluo- 
rometer (Invitrogen) using the dsDNA HS Assay Kit (Invitro- 
gen, Q33231). Bisulfite conversion was performed using three 
kits. DNA bisulfite conversion using EZ DNA Methylation 

Kit (Zymo Research, D5001) was performed according to 

the manufacturer’s instructions with the specified modifica- 
tions for Illumina Infinium Methylation Assay. DNA bisulfite 
conversion using EZ DNA Methylation-Gold Kit (Zymo Re- 
search, D5005) and EZ DNA Methylation-Direct Kit (Zymo 

Research, D5020) was performed according to the manufac- 
turer’s protocol. Cell lysis and bisulfite conversion from sorted 

cells and PGCs were performed with EZ DNA Methylation- 
Direct Kit according to the manufacturer’s instructions. 

DNA restoration 

After bisulfite conversion, the bisulfite-converted DNA was 
eluted, resulting in an 8 μl volume. The Infinium HD FFPE 

DNA restoration kit (Illumina, WG-321-1002) was then used 

according to the manufacturer’s instructions. Following a 1- 
min incubation, the elution of the DNA was carried out using 
autoclaved ultrapure water for a 10 μl elution volume. The 
eluted DNA was stored at –20 

◦C before undergoing Infinium 

array processing. Intermediate DNA purifications were per- 
formed using the DNA Clean and Concentrator-25 Kit (Zymo 

Research, D4064). 

Cytosine conversion elution size optimization 

The Illumina Infinium Mouse Methylation BeadChip assays 
were conducted according to the manufacturer’s specifica- 
tions with slight modifications ( Supplementary Tables S1 A 

and S1 B). The original protocol specifies using 4 μl obtained 

from 12 to 22 μl eluted BCD, mixed with 4 μl 0.1 N sodium 

hydroxide for amplification and BeadChip reaction (Infinium 

HD Assay Methylation Protocol Guide 15019519 v01). How- 
ever, commercial bisulfite conversion kits typically produce 
over 10 μl elution in purifying the converted DNA, leading 
to only part of the eluted DNA (4 μl) used for the BeadChip 

assay. Previous studies have adjusted the elution size or addi- 
tional concentration steps to minimize DNA loss. For exam- 
ple, one option is to mix 7 μl eluted DNA with 1 μl 0.4 N 

sodium hydroxide (NaOH) ( 40–42 ). DNA input can be max- 
imized by increasing NaOH concentration in denature step 

of the Infinium array. To preserve more input DNA, we com- 
pared four alternative combinations of elution buffer, input 
DNA volume, and NaOH concentration and volume. 

Enzymatic methyl (EM)-array sample preparation 

Libraries were prepared using the NEBNext Enzymatic 
Methyl-seq (NEB, E7120S) kit, following the manufac- 
turer’s instructions. 50, 5, 2, or 0.5 ng of 5mC adaptor- 
ligated NIH3T3 DNA was used as input. HiFi HotStart 
Uracil + Ready Mix (KAPA Biosystems, KK2801) was used to 

amplify the libraries following conversion before purification 

over SPRI beads (0.8 × left-sided) and elution in nuclease-free 
water to yield final libraries. Libraries were then quantified 

by Qubit HS (Invitrogen, Q32851) and quality checked on an 

Agilent Bioanalyzer 2100 before sequencing on an Illumina 
MiSeq instrument to confirm conversion efficiencies. Details 
of each input’s elution size and library amplification cycles are 
listed in Supplementary Table S1 C. 

ELBAR detection P -value calculation 

In the standard Infinium BeadChip usage, > 200 ng DNA is 
profiled, and probe detection calling is employed to filter out 
probes whose signals are subject to substantial background 

influence. However, this practice will cause significant bio- 
logical signal loss from low-input datasets where users of- 
ten seek to retain the most biological signal but can toler- 
ate some background influence. To meet this need, we de- 
veloped ELBAR (Eliminating BAckground-dominated Read- 
ing) to exclude / mask only probes lacking biological signals 
and entirely dominated by background signals. The ELBAR 

method is based on the observation that the beta value ranges 
depend on the probes’ total signal intensities and includes the 
following steps. First, we define total signal intensities as the 
sum of signals methylated (M) and unmethylated (U) alleles. 
Pooling in-band and out-of-band signals, ELBAR bins probes 
by log 2 -transformed M + U signal intensities. Next, ELBAR 

calculates the upper and lower bounds (calculated using the 
5% and 95% quantiles to accommodate outliers, defined as 
the beta value envelope ) of each bin as M + U varies. Third, 
we define the background signal by looking for the first bin 

that deviates in the beta value envelope of the bin from the 
smallest M + U. Lastly, these probes’ maximum M and U sig- 
nals were treated as the true background signal to compute 
detection P -values. 

Public datasets 

The mouse MM285 datasets were downloaded from GEO un- 
der GSE18441 ( 15 ,43 ). GEO accessions of other EPIC and 

HM450 datasets were provided in Supplementary Table S2 A. 
BS-seq dataset for 4 PGC samples (E10.5, E11.5, one male 
E12.5, and one female E12.5) was downloaded from GEO un- 
der GSE76971 ( 44 ). TCGA testicular seminoma datasets ( 45 ) 
were downloaded from Genomic Data Commons ( 46 ). 

Infinium BeadChip data preprocessing and analysis 

The Illumina Infinium BeadChips technology is based on 

sodium bisulfite conversion of DNA, with single base reso- 
lution genotyping of targeted CpG sites via probes on a mi- 
croarray. Probes are designed to match specific 50 base regions 
of bisulfite-converted genomic DNA, with a CpG site at the 
probe’s 3 

′ end ( 47 ). Upon hybridizing with bisulfite-converted 

DNA, the probe undergoes a single-base extension that in- 
corporates a fluorescently labeled ddNTP at the 3 

′ CpG site, 
enabling distinguishing of the C / T conversion resulting from 

bisulfite conversion. The fluorescent signals provide insight 
into the methylation status (methylated or unmethylated) of 
specific cytosine residues in the DNA sample. Signal intensity 
refers to the strength of the fluorescent signal emitted by the 
hybridized probes on the BeadChip. The signal intensity is di- 
rectly related to the quantity of target molecules bound to spe- 
cific probes. Probe success rates represent the proportion of 
successfully captured CpG probes for targeted CpGs. 

The IDAT files generated, along with all public datasets uti- 
lized, were processed using the SeSAMe R package. This en- 
compassed preprocessing, quality control, and analysis, ad- 
hering to the established preprocessing workflow ( 43 ). The 
probe detection p- value was computed using the pOOBAH 

algorithm, which leverages the fluorescence of out-of-band 

(OOB) probes. Subsequently, normalization was performed 

using noob, which applies a normal exponential deconvo- 
lution of fluorescent intensities based on the OOB probes. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
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Additionally, a dye bias correction was applied using the dye- 
BiasNL function. Infinium Methylation BeadChip manifest 
and annotations data, which include gene, chromatin state, se- 
quence context, the ‘PGCMeth’ probes list (designed to target 
CpGs highly methylated in E13.5 PGCs) ( 48 ), and other func- 
tional annotations, were obtained from http://zwdzwd.github. 
io/InfiniumAnnotation . Metagene plot was generated using 
the KYCG_plotMeta function in the SeSAMe package. To cal- 
culate the F1 scores of each sample against the 250-ng control 
(205243950081_R01C01), a beta value greater than 0.5 was 
rounded to one and set to zero otherwise. Then, the F1 score 
is calculated by treating one as true and 0 as false and compar- 
ing the target sample with the 250-ng control, i.e. F1 = 2TP 

/ (2TP + FN + FP) where TP is the true positive counts, FP is 
the false positive counts, and FN is the false negative counts. 

Results 

Characterizing the suboptimal DNA signatures in 

public Infinium datasets 

Suboptimal DNA quality and quantity impact Infinium 

methylation data through the manifestation of lower signal in- 
tensity and probe success rate. We first studied the probe suc- 
cess rate of over 100 000 public Infinium datasets deposited 

to GEO to identify the determinants of Infinium array per- 
formance (Figure 1 A). Comparing DNA sources, we observed 

that bone, buccal, plasma cfDNA, esophagus, and saliva of- 
ten yield data with suboptimal probe detection success. Fur- 
ther dataset stratification by sample preservation reveals that 
FFPE samples are significantly lower in probe success rate than 

non-FFPE samples. The lower signal intensity leads to skew- 
ing of beta values, which represent the methylation level at 
a specific site, towards an intermediate reading at 0.5 due to 

stronger relative influences of the signal background (Figure 
1 B–D) ( 34 ). This asymptotic convergence to 0.5, defined by 
the upper and lower bounds of beta values, forms a beta value 
envelope . This increase in the background signal influence is 
a continuous spectrum instead of a dichotomy of detection 

success vs. failure. When the input DNA is of high quality 
and quantity, most probes have stable and clustered signal 
intensities, leading to a bimodal beta value distribution. But 
in suboptimal datasets such as from FFPE and cfDNA sam- 
ples, more probes carry lower signal intensities, leading to 

beta values approaching 0.5 (Figure 1 C). This drop in sample 
quality in FFPE samples is likely intertwined with low DNA 

input amount, as supported by a similar transition of inter- 
mediate methylation readings in the low input data (Figure 
1 D and Supplementary Figure S1 A). We also found that FFPE 

and cfDNA samples lose detection at different genomic re- 
gions. cfDNA, saliva, and buccal cells preferentially lose de- 
tection at GC-rich promoter sites such as TssA and TssBiv, 
while FFPE samples are less biased across genomic territories 
(Figure 1 E). The full names of the chromatin states are avail- 
able in Supplementary Figure S1 B. 

Infinium BeadChip workflows for low DNA input 
and single cells 

To improve signal detection in low-input experiments, we de- 
veloped 13 non-standard workflows using: (i) preamplifica- 
tion of the genomic DNA (see Supplementary Methods ); and 

(ii) enzymatic cytosine conversion methods, besides other pro- 
tocol adjustments that preserve DNA load (see Figure 2 A, 

Supplementary Tables S1 A–S1 C). The probe success rate and 

F1 scores were presented in Figure 2 B–D for three work- 
flows, each representing distinct characteristics: the unmodi- 
fied workflow (Workflow A), the workflow with maximized 

elution size (Workflow C), and the most optimized work- 
flow with preamplification (Workflow J). Additionally, Figure 
2 C and D included a workflow achieved through enzymatic 
base conversion, labeled as Workflow M. In Supplementary 
Figures 2 B–2 D, we illustrated probe success rates, F1 scores 
and Spearman correlations for all 13 workflows, encompass- 
ing the four previously mentioned workflows. We found that 
the standard Illumina workflow (Workflow A) can detect sig- 
nals on 70% array probes with two ng DNA without mod- 
ification, consistent with our prior characterization of the 
EPICv2 BeadChip ( 49 ). In the sub-2-ng range, the detec- 
tion success rate drops rapidly for Workflows A and B (Fig- 
ure 2 B, C, and Supplementary Figure S2 B). Enzymatic base 
conversion (Workflow M) maximizes signal detection (84%) 
in 0.5 ng-input experiments, followed by a whole-genome 
preamplification-based method (Workflow J) and one with 

elution size modification alone (Workflow C). Due to the al- 
lelic nature of DNA, we use the F1 score (Materials and meth- 
ods), which binarizes beta values for comparison to the ref- 
erence sample, rather than correlation. In the five-cell exper- 
iments, Workflow J (Figure 2 B and D, and Supplementary 
Figure S2 C) consistently reaches over 70% in signal detection 

(pOOBAH < 0.05) and close to 90% in the F1 score. No- 
tably, Workflow J detects around 25% probes in single cells 
with an F1 score > 70%, suggesting that the detected data is 
biologically informative despite a higher rate of detection fail- 
ure. In contrast, the standard workflow is consistently under 
50% in the F1 score, suggesting more biologically misleading 
readings. 

For 0.5 and 2 ng input ranges, Workflow J also im- 
proved the data quality as indicated by the higher correla- 
tion coefficient with a 250-ng dataset (Figure 2 E and F, and 

Supplementary Figure S2 D). The improvement is most evident 
in the recovery of intermediate DNA methylation, which is 
only observed in workflow J at 0.5 ng (Figure 2 F), suggesting 
that preamplification helps all samples from fewer than ten 

cells to those with over 1 ng input (Figure 2 E). 
Previous studies have shown that FFPE restoration kits may 

improve signal detection on DNA of suboptimal quality ( 36 ). 
The FFPE restoration kit did not significantly improve the ar- 
ray performance with 50 ng and 0.5 ng non-FFPE DNA in- 
put (Workflows D and E, Supplementary Figure S2 E). We also 

did not observe substantial performance differences among 
the three different bisulfite conversion kits ( Supplementary 
Figure S2 F). EZ-direct kit produced data of a slightly better 
probe detection rate likely due to the minimization of DNA 

loss from a single-step bisulfite conversion and purification. 
We also compared preamplification based on random hex- 

amers (N6) and random hexamers with a T7 primer at the 5 

′ - 
end (N6-T7) for whole genome amplification ( Supplementary 
Figures S2 F and S2 G) ( 50 ). Workflow J showed the highest 
Spearman`s rho compared to other workflows with preampli- 
fication (Workflows F–I). The T7 sequence in N6-T7 serves 
as a second primer, allowing further PCR amplification. 
However, additional PCR cycles did not improve array per- 
formance (Workflows K and L, Supplementary Table S1 D, 
Supplementary Figures S2 B, and S2 D). Moreover, the array 
with four Klenow amplification cycles (Workflow H) did not 
outperform the array with two cycles. Given our findings, 

http://zwdzwd.github.io/InfiniumAnnotation
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
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Figure 1. L o w er input arra y s e xhibit lo w er signal intensity and lo w er probe success rates. ( A ) T he probe success rate in 105475 public Infinium 

meth ylation B eadChip arra y data sets. ( B ) Schematic sho wing the dependence of beta v alue on the probe’s tot al signal intensit y. The x-axis represents 
the total signal intensity, and the y-axis represents beta values. ( C ) The intensit y-bet a plot compares different DNA sources and ( D ) input amounts in ng. 
The green and red curves denote the beta value envelopes defined by the green and the red channel background signal, respectively. ( E ) The probe 
detection rate of FFPE and cfDNA samples at different genomic regions from HM450 (left) array data and (right) EPIC array data. 
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Figure 2. Infinium BeadChip performance in ultra-low input ranges. ( A ) A summary table of workflows used in this study. Workflow A is the Illumina 
standard w orkflo w. ( B ) B o x plots w ere used to visualiz e the probe success rates (top) and the F1 score (bottom). T he number of samples f or each 
e xperiment w as displa y ed ne xt to each bo x. (C, D) Comparison of f our main preparation methods based on ( C ) probe success rate and ( D ) F1 score. T he 
number on the top right corner of each tile indicates the number of samples analyzed in each experiment. See also Supplementary Figure S2 . (E, F) 
Smooth scatterplots for the comparison of workflows A, C, J, and M with ( E ) 2 ng and ( F ) 0.5 ng of DNA input ( R : spearman’s rho, P : P -value). The 
dashed squares indicate intermediate beta values (0.25–0.75) on both axes. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
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we followed the N6 amplification strategy for the subsequent 
analysis. 

Optimized workflow resolves intercellular 
heterogeneity while maintaining cell line identity 

DNA methylomes profiled from a small number of cells often 

reveal cell-to-cell heterogeneity. We next tested whether our 
low-input method can uncover this heterogeneity and whether 
the cell population averages reduce to measurements from 

high DNA input. We merged the single and five-cell methy- 
lomes, respectively, and compared the combined data with 

the 250-ng methylome (Figure 3 A). We found that the merged 

methylome reinstated the intermediate methylation measure- 
ments which are otherwise missing from the single low-input 
experiment representatives. As DNA methylation readouts are 
allelic (taking only 0%, 50%, and 100% in diploid cells), we 
expect a reduction of non-allelic fractions as the cell popu- 
lation becomes less heterogeneous. Focusing on CpGs show- 
ing intermediate methylation (0.3–0.7) in the 250-ng data, we 
observed a gradual dichotomization of methylation levels ap- 
proaching 0% and 100% in the 10-cell ( n = 4) datasets and 

more in the five-cell ( n = 5) datasets (Figure 3 B). This polar- 
ization is likely due to a higher genomic DNA homogeneity 
from reduced cell numbers. The lingering non-allelic methy- 
lation fractions are likely due to amplification bias and resid- 
ual cell-to-cell heterogeneity. Given the same input cell num- 
ber, preamplification (Workflow J) retained more intermedi- 
ate readings (Figure 3 C). The standard workflow (Workflow 

A) became nearly fully dichotomized at ten cells and struggled 

globally in the 5-cell experiment (Figure 3 C). 
Despite the resolution of intermediate methylation lev- 

els, small-cell-number data largely retain global and focal 
methylation differences intrinsic to the cell type identity 
( Supplementary Figure S3 A). All datasets from five to ten cells 
cluster with the 250 ng datasets of the same cell line on a t- 
distributed stochastic neighbor embedding (tSNE) projection 

(Figure 3 D). Most single-cell samples are also grouped ac- 
cordingly despite the erroneous placement of two single-cell 
B16 samples, likely due to lack of biological signal, as sug- 
gested by their ultra-low probe detection rates (0.13) com- 
pared to other samples of similar input DNA amounts. The 
five-cell datasets are clearly separated in a metagene plot that 
suggested a higher global methylation for the B16 cells at all 
input ranges ( Supplementary Figure S3 B). Finally, the differen- 
tially methylated CpGs between the two cell lines are largely 
preserved in five-cell methylomes (Figure 3 E). Random dis- 
crepant methylation did occur more frequently at CpGs in- 
termediately methylated in the 250 ng datasets for the two 

cell lines, respectively (Figure 3 E), enriching for bivalent chro- 
matin ( Supplementary Figures S3 C and S3 D). Collectively, 
these data suggest the Infinium arrays can robustly profile five- 
cell samples. While the Infinium arrays can profile single cells, 
their performances are unstable (Figure 3 D). 

GC-rich and high copy number regions retain 

detection in low input datasets 

We next explored which genomic regions are most suscep- 
tible to detection loss in high and low input experiments. 
We first observed that signal intensities intrinsically depend 

on the probe sequences. We studied the within-sample inten- 
sity Z -score of HM450 autosomal probes across 749 nor- 
mal samples from the TCGA cohort (Methods) (Figure 4 A, 

Supplementary Figure S4 A). The violin plot displays the com- 
plete set of Z -scores for probes in the cohort. Data points 
corresponding to individual samples were smoothed and pro- 
vided a comprehensive view of the overall distribution pat- 
tern. The Z -score distribution for different probes shows clear 
probe dependence. Probes at the high and low signal intensity 
extremes have little overlap, suggesting a strong sequence de- 
pendence. Probes targeting GC-rich regions (as indicated by 
the number of ‘C’s in the probe sequences since ‘G’s are re- 
placed by ‘ A’ s to pair with ‘T’s from bisulfite conversion) are 
associated with higher signal intensities (Figure 4 B). This is 
supported by an enrichment of the detected probes in CpG 

islands (Figure 4 C, D, and Supplementary Figure S4 B), gene 
promoters, transcription factor binding sites, e.g. TFAP2C, 
and promoter-associated histone modifications, e.g. H3K64ac 
( Supplementary Figures S4 C and D). 

Consistently, the probes that fail detection in 250-ng and 

5-cell samples are significantly enriched in low-CpG density 
regions (Figure 4 C). PMD solo-WCGWs—CpGs flanked by 
A / Ts and with no other CpGs within a 70-bp neighborhood 

at partially methylated domains ( 51 )—are observed to lose 
most signal detection, consistent with their CpG-sparse na- 
ture. Probes targeting non-CG cytosine methylation also tend 

to lose detection in low-cell-number samples. Interestingly, mi- 
tochondrial CpG probes, transposable element (TE) CpGs, 
and other multi-mapping probes have the least probe detec- 
tion loss in low-input datasets. The mitochondrial genome 
showed nearly 100% probe detection success in single, and 

two-cell experiments. This is likely due to the high copy num- 
ber of mitochondrial genomes per cell ( 52 ). Similarly, other 
high copy number repetitive elements, such as the Satellite, 
B1 elements, and other SINE1 / 7SL elements, also show high 

probe success rates (Figure 4 E and F). These results suggest 
that the multi-mapping probes may be used as a TE profil- 
ing tool for low-input samples. More prevalent heterogene- 
ity in DNA methylation within quiescent chromatin was ob- 
served. CpGs displaying lower methylation levels in bulk tis- 
sues but higher levels in individual five cells (Figure 4 G, right 
panel), or vice versa ( Supplementary Figure S4 E, right panel), 
are both enriched in quiescent chromatin regions. In con- 
trast, promoters (Tss) and gene bodies (Tx) showed consis- 
tently low (Figure 4 G, left panel) and high methylation levels 
( Supplementary Figure S4 E, left panel), respectively, in both 

the bulk tissue and the 5-cell samples. 

ELBAR preserves more signal detection for 
low-input datasets 

The conventional detection P -value calculation aims at pre- 
venting false discovery in high-input datasets, where probes 
with suboptimal signal intensity are rare and a relatively 
clear decision boundary can be found. In low-input sam- 
ples, more probes carry lower signal intensity and can over- 
lap with measurements purely dominated by background sig- 
nals ( Supplementary Figure S5 A). Applying the same detec- 
tion P -value threshold may lead to a significant loss of bio- 
logically useful readings. To better balance sensitivity for low- 
input datasets, we developed the ELBAR algorithm, based on 

the observation that probes dominated by signal-background- 
only are always associated with intermediate methylation 

readings (Figure 5 A). In brief, ELBAR looks for low-signal 
probes with intermediate methylation to model the back- 
ground signal (Methods). Doing so can effectively remove 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
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Figure 3. L o w input meth ylation arra y data unco v ered sample-to-sample heterogeneity. ( A ) Smooth scatter plots f or meth ylomes from a representativ e 
single-cell dataset, the merged single-cell dataset ( N = 10), a representative 5-cell dataset, and the merged five-cell dataset ( N = 5), respectively, against 
the 250-ng input. ( B ) Distribution of intermediate methylation (0.3–0.7, dashed black square) of CpGs in the 250-ng methylome in 10- and 5-cell datasets. 
Each blue dot represents a CpG, and the X-axes were arranged in the order from chromosome 1 to chromosome Y, with each chromosome displa y ed in 
alternating gray and black colors. ( C ) DNA methylation level distribution of 5 cells to 50 ng with different workflows. ( D ) tSNE cluster of NIH3T3 and B16 
using 20 0 0 probes most v ariable in the meth ylation le v el. Fractions labeled in the plot are probe success rates f or eac h dataset. All B1 6-F0, NIH3T3, and 
PGCs e x cept 50, 100 and 250 ng w ere whole genomes amplified b y Workflo w I or J. ( E ) Heatmap sho wing arra y perf ormance comparison of 5-cell 
methylomes of B16-F0 and NIH3T3 with 250-ng methylomes. 20 0 0 highly variable CpGs with the highest standard deviations of DNA methylation value 
among samples were used. 
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Figure 4. L o w-input Infinium arra y preferentially loses detection on GC-sparse genome but retains detection on mitochondria and TEs. ( A ) Violin plot f or 
intensity Z -score of representative HM450 autosomal probes across 749 normal samples from the TCGA cohort. ( B ) Correlation of signal intensities with 
the number of Cs in the probe sequence. ( C ) CpG density enrichment analysis for NIH3T3 5-cell and 250-ng datasets. (Bottom) The x-axis represents 
probes ( N = 297 415) organized in ascending order based on their CpG density. Y-axis indicates the CpG density for each probe. (Top) The x-axis aligns 
with the bottom plot, and the y-axis exhibits the enrichment score (ES). Each bar in the figure depicts the location of a pO OBAH-mask ed probe, arranged 
in ascending order of CpG density within a ±75 bp range of the flanking region surrounding the CpG target for each probe. ( D ) The mean and standard 
deviation (with error bars) of the probe success rate of probe design groups (a complete description of the definition of each probe design group is listed 
in the legend of supplementary Figure S4 ) (top). Flanking GC content ratios of probes on mouse methylation array within a range of ± 50 bp, categorized 
by probe design groups (bottom). ( E ) the mean of the probe success rate of TEs for varying DNA input amounts, ranging from single-cell to 250 ng 
datasets. The x-axes are organized in ascending sequence according to the probe success rates for five cells in (D) and single cells in (E). ( F ) (top) The 
probe detection rates of eight CpG probes targeting B1 elements ranged from single cells to 250 ng, and (bottom) corresponding beta values cover the 
same range. ( G ) The beta value distribution of CpGs in the 5 cells of NIH3T3 with blue dots, emphasizing fully unmethylated (less than 0.1 of beta 
values) in the 250-ng sample, represented by red dots (center). The x-axis was organized in descending order of beta values of the 5 cells. Dot plots for 
enric hed c hromatin states ( 75 ) f or CpGs within the dashed gra y square with delt a bet a less than 0.25 bet ween the t wo samples (left), and CpGs within 
the dashed orange square with delta beta greater than 0.25 (right). Estimate: log 2 of Odds ratio; o v erlap: number of curated CpG probes for each term of 
chromatin state. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
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Figure 5. ELBAR detection preserves more probes with biological signals. ( A ) A schematic illustration of the ELBAR algorithm. The x-axis represents 
the total signal intensity, and the y-axis represents beta values. ( B ) Performance of ELBAR in eliminating background-dominated reading probes 
compared to pOOBAH and unfiltered in PGCs, 0.1-, 0.5- and 250-ng-input datasets. Dashed bo x es illustrate the artificial, background-dominated readings 
left by pOOBAH masking. The green and red curves denote the beta value envelopes defined by the green and the red channel background signal, 
respectively. (C, D) ELBAR performance regarding the probe success rates for public human ( C ) and mouse ( D ) array datasets. (E, F) Comparison of 
ELBAR performance with pOOBAH regarding probe success rate ( E , P -value = 2.7E-8, t -test of method difference in a multiple linear regression) and 
Spearman’s rho ( F , P -value = 0.71, t -test of method difference in a multiple linear regression) in low-input datasets with DNA input ranging from single 
cell to 250 ng. ( G ) Comparisons of three probe masking methods: (top) the total number of readings surviving detection masking from 53 FFPE 
samples, and (bottom) the methylation reading deviation from putative ground truths in these 53 samples. 
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background-induced artificial readings while minimally re- 
moving probes with biological signals (Figure 5 B). In the cell 
line experiments, probes that survive ELBAR masking main- 
tain a bimodal distribution of beta values as biologically ex- 
pected. In contrast, pOOBAH, a prior method designed for 
high-input datasets, masked probes more aggressively. The 
probes surviving pOOBAH masking are slightly asymmet- 
ric in the beta-value envelope and show a small amount of 
background-dominated beta values (Figure 5 B). ELBAR ef- 
fectively masked these beta values associated with low signal 
intensity and artifactually fixed around 0.5. 

Testing ELBAR on public EPIC, HM450 (Figure 5 C, 
Supplementary Table S2 A), and MM285 (Figure 5 D) datasets, 
we found that it could rescue a significant number of 
probes compared to pOOBAH. Interestingly, experiments 
with array-wide failure remain low in detection rates, sug- 
gesting ELBAR can discriminate probe failure against array- 
wide failures. The probes rescued by ELBAR from pOOBAH 

show biological relevance, evidenced by higher correlation 

with the 250 ng datasets ( Supplementary Figure S5 B). Of 
note, ELBAR combines negative control probes for back- 
ground calibration and only considers intermediate methy- 
lation reading from low-intensity probes. Hence, its mask- 
ing would not be influenced by true biological methylations. 
For example, we validated ELBAR’s performance in samples 
with globally high, intermediate, and low methylation lev- 
els ( Supplementary Figures S5 C–E), including testicular semi- 
noma tissues ( Supplementary Figure S5 F). ELBAR improves 
detection in wide input ranges (Figure 5 E, P -value = 2.7E-8, 
t -test of the method sensitivity difference in multiple linear re- 
gression) without harming accuracy (Figure 5 F, no statistical 
significance detected from method accuracy differences). 

To further validate ELBAR’s performance in FFPE samples, 
we compared ELBAR, pOOBAH and minfi’s detectionP func- 
tion in a previous study of 53 melanoma FFPE tissue samples 
( 53 ). We used five samples with the best detection p -values to 

derive a putative ground truth methylation profile and evalu- 
ated the measurement deviation in probe sets stratified by the 
masking status under the three methods (Figure 5 G). Probes 
that survive all three masking methods have the lowest methy- 
lation level deviation as expected, followed by the probes 
masked only by pOOBAH. These probes are the greatest in 

number compared to other probe masking groups, suggesting 
that pOOBAH may have caused a significant loss of biological 
signal in this dataset. Overall, ELBAR-masked probes are as- 
sociated with higher measurement deviation from the ground 

truth (dark red in Figure 5 G), despite that they may survive the 
masking by the other two methods. Collectively, these results 
point to an advantage of using ELBAR for detection calling 
over pOOBAH and detectionP in FFPE samples. 

Low-input BeadChip data captures the 

demethylation dynamics in primordial germ cells 

PGCs are typically present in low numbers, hindering their 
analysis by the standard Infinium array processing workflow 

( 54–56 ). In mammals, PGCs undergo genome-wide epigenetic 
reprogramming, including global DNA methylation loss, as 
they migrate from the epiblast to the bipotential gonads ( 57 ). 
This corresponds to embryonic day(E)7.5 to E14.5 of de- 
velopment in the mouse. We applied our optimized method 

to study the methylation of mouse gonadal PGCs collected 

at E11.5 to E14.5 (Figure 6 A). For each time point, PGCs 

from a pair of embryonic gonads were FACS sorted (Meth- 
ods), and the aliquoted volume varied from 0.25 μl to 9 μl. 
We employed workflow J, with pre-amplified DNA amounts 
ranging from ∼1 ng to 13 ng ( Supplementary Table S2 B). 
As a contrast, we included methylome profiles of mouse 
liver, lung, ovary, and testes tissues in our analysis (Methods, 
Supplementary Table S2 C). 

Consistent with prior knowledge, PGCs exhibit the low- 
est methylation level relative to somatic tissues and adult go- 
nads across major chromatin states (Figure 6 B and C). Con- 
sistent with the probe design rationale, ‘PGCMeth’ probes 
showed resistance to methylation in E11.5 and E13.5 PGCs. 
The genome-wide distribution of PGC methylation loss is 
largely uncoupled from their methylation states observed in 

non-PGC tissues. For example, the genomic regions with ac- 
tive gene transcription (ChromHMM states ‘Tx’ and ‘TxWk’) 
were associated with the highest methylation in non-PGC tis- 
sues (Figure 6 B). But in PGCs, gene bodies are less methylated 

than heterochromatin and transcriptionally quiescent regions 
(Figure 6 B and C). We observed a partial methylation loss in 

E11.5 PGCs. The demethylation process culminated in E13.5 

PGCs. Male PGCs initiated re-methylation as early as E14.5, 
while female PGCs remained similarly unmethylated at E14.5 

as E13.5. This is consistent with de novo methylation occur- 
ring in female germline postnatally as oocytes are recruited 

for growth during each reproductive cycle ( 58 ). This sex dis- 
parity in methylation rebound is evident in imprinted gene- 
associated differentially methylated regions (DMRs) and gene 
bodies (Figure 6 D and Supplementary Figure S6 A). 

The arrays allow for detailed analysis of the timing 
of the DNA methylation change across genomic elements. 
For example, the retained DNA methylation at heterochro- 
matin is enriched at TRIM28 binding sites (Figure 6 E and 

Supplementary Figure S6 B). TRIM28 regulates the transcrip- 
tion of TE, particularly endogenous retroviruses (ERV) ( 59 ). 
Specific ERV elements are known to retain DNA methylation 

in human PGC development ( 60 ) and mice ( 61 ). These ob- 
servations suggest a critical role for DNA methylation in TE 

suppression for maintaining germ cell genome integrity and 

intergenerational epigenetic inheritance. 
Interestingly, PGC residual methylation is also enriched 

for the binding of the DNA methylation reader proteins 
MECP2 and MBD1, supporting their reported roles in DNA 

methylation-mediated TE regulation ( 62 ). Among TE DNA 

families, LTR elements were more resistant to PGC demethy- 
lation than SINEs and LINEs, consistent with their functions 
as transcriptional promoters ( 63 ). The role of methylation re- 
tention in TE regulation is further supported by the higher 
methylation retention in evolutionarily younger TE subfami- 
lies than older TE families ( 64 ) (Figure 6 F). Intracisternal A 

Particle (IAP) elements were previously highlighted to exhibit 
extensive methylation retention in PGCs ( 65 ). We identified 

a heterogeneous pattern of their demethylation dynamics in 

PGCs. IAPLTR2, IAPEY and IAPA are among the most resis- 
tant families, while IAPEY5, IAPLTR4 and IAP5 are the least 
methylated. 

In addition to TEs, imprinted gene DMRs, germ cells, 
and placenta-specific hypomethylated sites show later DNA 

methylation loss compared to the rest of the genome. This is 
due to active DNA demethylation pathways, mediated by TET 

proteins, that are required for methylation erasure at imprint- 
ing control regions ( 39 ,66 ). CGs flanked by A / Ts are more 
susceptible to aging-associated DNA demethylation ( 51 ). We 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
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Figure 6. L o w-input Infinium arra y data re v eals epigenetic dynamics of primordial germ cell de v elopment. ( A ) Expected DNA meth ylation dynamics 
during primordial germ cell de v elopments. E11.5 and E13.5 refer to embryonic days after fertilization. (B, C) DNA demethylation patterns in PGCs and 
tissues stratified by ChromHMM states ( B ) and mouse array probe design groups ( C ). ( D ) DNA methylation distribution in gene body regions in PGCs 
and tissues. M: male; F: female. ( E ) Enriched genomic features by CpGs that retain methylation level (over 0.5) in the three female E11.5 PGCs. The size 
of each circle represents the log2 odds ratio (OR) of individual curated CpG sets, and the y-axis indicates the -log10 of the false discovery rate (FDR) for 
each curated CpG set. Arranged from left to right along the x-axis are four distinct sets of databases: chromatin states, probe design group, histone 
modification consensus, and transcription factor binding site consensus motif. ( F ) DNA demethylation patterns in TEs (left) and IAP elements (right) 
across PGCs and tissues. 

did not observe this sequence context preference for PGC de- 
velopment ( Supplementary Figure S6 C), suggesting a distinct, 
TET-mediated demethylation mechanism. 

Discussion 

Despite the successful employment of Infinium BeadChips in 

population-scale DNA methylome studies, their potential for 
‘difficult’ DNA, i.e. when the input is limited in quality, quan- 
tity, or both, has not been fully explored or optimized. This re- 
stricts the scope of the Infinium array usage for cell-free DNA, 
microdissected tissues, and other samples of limited availabil- 
ity. Here, we presented experimental and computational re- 
sources to enable array usage in these suboptimal settings, 
especially with low-input DNA. Experimentally, we explored 

the array’s compatibility with random priming-based whole 
genome preamplification and enzymatic base conversion by 
TET / APOBEC3A. Our data suggests that both preamplifica- 
tion and enzymatic base conversion by TET / APOBEC3A us- 
ing the NEBNext Enzymatic Methyl-seq (Workflow J). Com- 
putationally, we developed ELBAR for preserving biological 
signals from suboptimal input datasets. ELBAR excludes only 
probes dominated by background noises. 

Besides, we comprehensively characterized the biological 
and technical determinants of array performance from public 
datasets. From surveying 100 000+ datasets and using probe 
detection rate as the main performance metric, we found that 
cell-free DNA, saliva, bone and FFPE samples, tend to have 
worse detection rates compared to cultured cells, primary and 

fresh frozen tissues. FFPE samples and those of sheer lower in- 
put show a different genomic distribution in signal detection. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae127#supplementary-data
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Plasma cfDNA tends to cause detection loss at CpG-sparse, 
GC-low genomic regions and preserved detection at CpG-rich 

regions such as bivalent chromatin. In contrast, FFPE-induced 

detection loss is less biased across genomic regions. This low- 
input sample bias can be attributed to the weaker intrinsic 
signal from GC-low probes (Figure 4 C and D). As cfDNA lo- 
calization is known to be linked to nucleosome footprints and 

can inform cell of origin ( 67 ), the array signal intensity bias 
may serve as an unconventional source of cell of origin sig- 
nal to complement the methylation signal that the array data 
already carries. 

Although Illumina recommends a minimum of 200 ng of 
DNA for current Infinium BeadChips, there has been research 

exploring lower input amounts. For example, reproducible re- 
sults were achieved with over 125 ng of DNA from periph- 
eral blood ( 68 ), and an input of 16 ng exhibited a high cor- 
relation with 500 ng input, albeit with lower reproducibility. 
Another study identified 75 ng as the minimum requirement 
( 69 ), and a few other studies suggested that 10 ng is accept- 
able ( 35 , 70 , 71 ). The fact that the standard protocol works at 
these sub-optimal input ranges is likely due to the isothermal 
amplification. However, the true lower input limit of the tech- 
nology remains underexplored, and the extent to which pre- 
cision and sensitivity are compromised with decreased DNA 

input remains incompletely resolved. Our work shows that In- 
finium arrays are reasonably compatible with picogram-range 
input DNA or single-digit cell number. Preamplification us- 
ing Klenow fragments and enzymatic conversion further mag- 
nifies probe signal intensities, leading to reproducible profil- 
ing of five-cell methylomes. Interestingly, additional adapter- 
based PCR amplification did not lead to a further increase 
in probe detection or accuracy ( Supplementary Table S1 D), 
likely due to loss of library complexity from amplification bias 
( 72 ). 

The Infinium technology is currently not cost-competitive 
for projects that only massively profile methylomes in single 
cells due to the incompatibility with the sample multiplexing 
( 73 ). The focus of this work is to explore the capacity of In- 
finium technology in profiling samples of variable quantities 
and whether the data is comparable. This is most relevant to 

applications where DNA can be of high or limited quanti- 
ties, such as microdissected tissues ( 24 ) and cell-free DNA. 
In fact, techniques shared with sequencing-based methods, 
such as preamplification using Klenow or other polymerases 
( 27 ), would benefit both high and low input samples (e.g. the 
50-ng samples in Figure 2 C and D). We showed that low- 
input Infinium BeadChip data is comparable to high-input 
data and is biologically relevant. It reflects the allelic nature 
of the DNA methylation signal on low DNA input. Interme- 
diate methylation levels were resolved to high and low methy- 
lation readings. These binary readings reflect cell-to-cell het- 
erogeneity and when merged, their population averages reca- 
pitulated bulk input measurements. Our single-cell array data 
reached 20% detection, similar to previous deep single-cell 
WGBS datasets ( 30 ). 

Previous data analysis workflows relied on a single thresh- 
old for determining signal detection success ( 74 ). While this is 
a viable assumption for the high input data, it does not always 
hold for low-input datasets. In low-input datasets, biological 
signals overlap more with background signals in signal inten- 
sity, particularly for probes with intrinsically low foreground 

signals. Our analysis showed that this intrinsic propensity is 
linked to the number of Cs in the probe sequences, likely rem- 

iniscent of a GC content bias as the probes are designed to 

be G-less to pair with converted genomic DNA. The stronger 
overlaps of biological with background signal not only obfus- 
cate the detection discrimination but also bias the beta value 
calculation towards 0.5 due to the incomplete subtraction of 
signal background from the observed compound signal. Users 
should consider this major tradeoff of measurement precision 

for sensitivity. 
Compared to pOOBAH and other detection calling meth- 

ods designed to minimize false discovery in high-input 
datasets, ELBAR seeks to mask only probes fully dominated 

by signal background, leaving probes with true biological sig- 
nals visible in downstream analysis. However, we caution that 
probe readings surviving ELBAR detection may be influenced 

by background signals to various degrees, leading to unsta- 
ble quantitative accuracy. The detection p -values can serve as 
measures of background influences besides their traditional 
use for probe masking. For high-input samples, pOOBAH and 

ELBAR perform similarly (Figure 5 E and F), suggesting that 
one may use ELBAR for data from all input settings. 

Despite the reduced probe detection in low-input datasets, 
probes that target multi-copy DNA, such as mitochondria 
and repetitive elements (e.g. the B1 elements and satellite 
sequences), retain high signal intensities. In the low-input 
datasets, we observed that these probes measure aggregated 

signals from multiple genomic loci, making an unconventional 
use of the methylation BeadChips—as a tool to study the 
global epigenetic regulation of multi-copy TEs. In our work, 
we applied our low-input protocol to profile mouse PGCs. We 
validated the dynamics of global methylation erasure in PGCs, 
a sex disparity in remethylation, as well as the demethylation 

resistance at TRIM28 binding sites which are known to escape 
germ cell epigenetic remodeling ( 60 ). These multi-mapping 
probes also revealed that evolutionarily younger LTR repeat 
families retained more methylation than other repeat families. 
These methylation retentions can protect germ-line genome 
integrity from TE transcriptional mobilization. 

Conclusion 

We presented experimental and computational solutions for 
applying Infinium BeadChips to low-input and single-cell 
samples. Based on whole-genome preamplification and enzy- 
matic base conversion, our new methods revealed a previously 
underappreciated low-input potential of this popular methy- 
lation profiling assay. We demonstrated the power of these 
methods by applying them to uncover detailed demethylation 

dynamics of murine primordial germ cell development. 

Data availability 

All BeadChip data produced in this study is available 
through GEO (accession: GSE239290). ELBAR and other 
informatics for low input methylation BeadChip are imple- 
mented in the SeSAMe (version 1.18.4+) available through 

Bioconductor ( https:// doi.org/ doi:10.18129/ B9.bioc.sesame ). 
ELBAR can also be used in the openSesame workflow with 

the "I" code specified in the prep = argument (see SeSAMe 
vignette ). 
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