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C O M P U TAT I O N A L  B I O L O G Y

KnowYourCG: Facilitating base-level sparse 
methylome interpretation
David C. Goldberg1†, Hongxiang Fu1†, Daniel Atkins1, Ethan Moyer1, Chin Nien Lee2,  
Yanxiang Deng2, Wanding Zhou1,2*

Decoding DNA methylomes for biological insights is critical in epigenetics research. We present KnowYourCG 
(KYCG), a data interpretation framework designed for functional DNA methylation analysis. Unlike existing tools 
that target genes or genomic intervals, KYCG features direct base-level screenings of diverse biological and techni-
cal influences, including sequence motifs, transcription factor binding, histone modifications, replication timing, 
cell-type–specific methylation, and trait associations. Through implementing efficient infrastructure that rapidly 
screens and investigates thousands of knowledgebases, KYCG addresses the challenges of data sparsity in various 
methylation datasets, including low-pass or single-cell DNA methylomes, 5-hydroxymethylation (5hmC) profiles, 
spatial DNA methylation maps, and array-based datasets for epigenome-wide association studies. Applying KYCG 
to these datasets provides valuable insights into cell differentiation, cancer origins, epigenome-trait associations, 
and technical issues such as array artifacts, single-cell batch effects, and Nanopore 5hmC detection accuracy. Our 
tool simplifies large-scale methylation analysis and integrates seamlessly with standard assay technologies.

INTRODUCTION
Modified cytosine 5′-carbon at the CpG dinucleotide context is one 
of the most studied epigenetic marks in higher eukaryotes. In mam-
mals, DNA methylation extensively implicates gene regulation, ge-
nome evolution, organismal development, and disease (1). Despite 
the prevalent interest in characterizing the DNA methylome, under-
standing the functional implications of methylation changes can be 
difficult. This is partly because DNA methylation is encoded on spe-
cific sequence units, e.g., CpG dinucleotides, but is also highly plas-
tic and jointly governed by multiple intrinsic and external factors, 
such as cell identity (2), genetics (3), pathology (4), sex (5), age (6), 
and other environmental conditions (7). Functional DNA methyla-
tion analysis often demands awareness of the sequence structures 
and all explicit and hidden biological covariates (8) and technical 
confounders (9).

Effective computational methods for mining biological links from 
DNA methylation data have been lacking compared to their gene ex-
pression counterparts (10–12). Most functional enrichment analysis 
methods for DNA methylation data piggyback on tools initially de-
signed to investigate gene sets [e.g., DAVID (12)] and genomic intervals 
[e.g., HOMER (13) and GREAT (14)]. Methods specifically designed 
for DNA methylation data follow a similar gene-centric (15, 16) or ge-
nomic interval–based approach (14, 17, 18). In other words, investiga-
tors must first link CpGs to genes or form a differentially methylated 
region (DMR) based on genomic proximity (14, 17, 19, 20).

There are fundamental drawbacks to these strategies. First, DNA 
methylation data are inherently sparse due to CpG depletion outside 
CpG islands and additional sparsity introduced by practical con-
straints of profiling methods (Fig. 1A). The Infinium arrays, widely 
used in epigenome-wide association studies (EWAS), cover only 1 
to 3% of the genomic CpGs (9). Reduced representation bisulfite 

sequencing (RRBS) covers ~10% but is limited to CpG-dense re-
gions. Whole-genome bisulfite sequencing (WGBS) covers the 
entire genome but frequently lacks per-base depth and quantifi-
cation granularity. Epitomizing both forms of sparsities, single-
cell methylomes typically cover 1 to 10% of the entire CpG set in 
the genome (Fig. 1A) (21). These data sparsities make accurate 
definitions of DMRs difficult and often subjective, even when true 
differences exist.

Second, gene-centric approaches face challenges in establishing 
meaningful CpG-gene associations and unbiased gene weighting 
(21–23). Methylation at different gene regions plays distinct regula-
tory roles (24), and gene-centric analysis often misses biology at in-
tergenic, geneless regions. Intergenic methylation is known to 
implicate cell replication (25, 26), genome instability (25–28), cell 
differentiation (2, 29), and aberrant writer/eraser enzyme activity 
(30, 31). Because of the discrete nature of CpG dinucleotides and 
their depletion from deamination, proximity-based CpG-gene asso-
ciations or DMRs may fail to reveal clear enrichment patterns. In-
stead, focal and dispersed methylation changes are more common 
and implicate transcription factor (TF) binding (29).

The alternative strategy to study functional links in DNA meth-
ylation data is to use CpGs as the units of analysis based on a 
fixed CpG index, as implemented in methods such as eFORGE 
(32, 33), which were designed for array-based datasets with 20,000 
to 900,000 probes (34). However, as newer datasets scale to whole-
genome coverage (20 million to 30 million CpGs), overlap count-
ing across hundreds to thousands of knowledgebase sets becomes 
computationally inefficient.

To address the above needs, we developed a comprehensive com-
putational framework for DNA methylation data interpretation 
(Fig. 1B). KnowYourCG (KYCG) analyzes CpG sets for biological 
links and technical confounders. Capitalizing on a key technical in-
novation that rapidly enumerates CpG set differences across the 
whole genome, we achieve fast enrichment testing of methylomes 
against up to thousands of curated biological and technical covari-
ates. Next, we first describe the implementation, after which we apply 
the tool to five broad application scenarios: (i) low-input DNA 
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Fig. 1. Overview of the KnowYourCG analysis framework. (A) Visualization of DNA methylation data sparsity in terms of the genome coverage and sequencing depth 
across common profiling methods. M, million; NGS, next-generation sequencing. (B) Schematic comparison between traditional gene-centric and KnowYourCG (KYCG) 
CpG-centric analytical workflows. BS-seq, bisulfite sequencing. (C) Overview of curated CpG knowledgebases used in KYCG for enrichment analysis. LINE, long inter-
spersed nuclear element; kbp, kilo–base pair; ERV, endogenous retroviruses. (D) Memory and speed performance benchmarking of KYCG’s vectorized approach versus 
traditional set-based CpG representations. Gb, gigabytes. (E) Speed benchmarking of KYCG compared to a standard pipeline for computing enrichment statistics over 
increasing knowledgebase numbers. (F) Evaluation of enrichment testing in sparse datasets. ChromHMM state rankings were tested at varying levels of CpG sparsity from 
N (~28 million CpGs) to N/214 (~1700 CpGs). P values are based on Fisher’s exact tests.

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 24, 2025



Goldberg et al., Sci. Adv. 11, eadw3027 (2025)     24 October 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  R e so  u r c e

3 of 19

methylation profiles, including single-cell and spatial DNA methyla-
tion; (ii) 5-hydroxymethylation (5hmC) profiles and Nanopore-
based direct detection; (iii) cell-type composition dynamics; (iv) 
interpretation of predictive machine learning tools such as epigene-
tic clocks and cancer classifiers; and last, (v) the detection of techni-
cal confounders. Collectively, we show that KYCG unveils interesting 
unreported links between CpG groups and demonstrated a variety of 
practical functionalities for analyzing large-scale DNA methylome 
data. Our tool is compatible with sequencing-based data and array 
platforms and has a user-friendly web-based application.

RESULTS
CpG-centric interpretation of sparse DNA methylomes
KYCG is a framework consisting of a web application, an R/Biocon-
ductor application programming interface, a C command-line tool, 
and a database designed for DNA methylation data exploratory en-
richment analysis, analogous to gene set enrichment analysis but fo-
cused on CpGs (Fig. 1B and fig. S1A). A CpG set linked to known 
biological functions, such as the specific binding sites of TFs, is called 
a knowledgebase set to distinguish it from the query. The significance 
of overlap between query CpGs and knowledgebase sets is evaluated 
using the hypergeometric distribution (Materials and Methods). To 
automate discovery, we uniformly processed 12,114,567 CpG-indexed 
knowledgebases for download and online query (Data and materials 
availability). These sets are constructed from human and mouse ge-
nome sequences, annotations, and public sequencing and array-based 
profiling (11,806 bulk and 480,012 single cells) and 1067 EWAS stud-
ies (Fig. 1C, table S1A, fig. S1B, and Materials and Methods).

To manage statistical complexity and improve interpretability, we 
grouped the CpG sets into biologically distinct testing knowledge-
base domains representing separate hypothesis spaces with varying 
term counts, biological relevance, and structural organization. These 
domains are further classified into the following four major catego-
ries: (i) sequence features (e.g., k-mer, tetranucleotide, and tran-
scription binding motifs), (ii) genomic features (e.g., chromatin 
states, histone modifications, gene links, transposable elements, TF 
bindings, and evolutionary conservation), (iii) trait associates (e.g., 
cell-type–specific methylations, human EWAS associates, and epi-
genetic clocks), and (iv) technical associates (e.g., sequence maskers, 
array hybridization, and extension masks). We extensively validated 
these knowledgebases, which form biologically relevant communi-
ties (fig. S1, C to E, and Materials and Methods). These testing do-
mains define independent hypothesis spaces. Testing within domains 
preserves statistical power and biological focus.

To optimize performance, we used adaptive encoding to com-
press CpG sets, achieving compact disk storage and efficient in-
memory manipulation (Materials and Methods). The comparison 
algorithm, implemented in C with bitwise vectorization, substan-
tially accelerates the set overlap analysis. Our results demonstrate 
that for queries with 1 million CpGs, this method is ~10× faster and 
uses ~60× less memory than traditional set-based representations of 
CpGs. Unlike set representations, comparison time remains constant 
and scalable to large query sizes (Fig. 1D). Compared to a BEDTools-
based pipeline of counting query overlaps (35), KYCG achieves a 25-
fold speedup (Fig.  1E), supporting large-scale enrichment testing 
across thousands of knowledgebases. Similar performance gains ex-
tend to other functionalities, such as rapid methylation aggregation 
over knowledgebases (fig. S1F).

We first tested KYCG’s performance under query sparsity, as 
seen in RRBS, capture methylation sequencing (methyl-seq), and 
Infinium arrays, which target only a small subset of CpGs. To assess 
the enrichment testing feasibility, we simulated sparsity by downs-
ampling CCCTC-binding factor (CTCF) binding–associated CpG 
sets from the full-genome set (N ~ 28 million) to N/214. We then 
evaluated the stability of ChromHMM state rankings by comparing 
sparse and full-genome enrichment (Fig.  1F). Active promoters 
consistently ranked highest, but sparsity introduced variations. The 
top-ranking ChromHMM terms remained stable at sparsity levels 
down to N/210 (~27,000 CpGs), with HM450, EPIC, and RRBS-
based results resembling nonsparse predictions. However, the top 
enrichment term changed in 26% of runs at the extreme sparsity 
level (N/214; ~1700 CpGs). These findings illustrated KYCG’s stabil-
ity for enrichment testing with sparse CpG inputs.

KYCG reveals biology from low-input, single-cell, and spatial 
DNA methylomes
Next, we evaluated KYCG’s performance in real sparse sequencing 
data by first analyzing methylomes (~2 million to 8 million CpGs) 
from various stages of primordial germ cell (PGC) development, 
where limited DNA precludes deep profiling (36). Enrichment anal-
ysis of methylated CpGs against TF binding sites (TFBS) and his-
tone mark knowledgebases (Fig. 2A) showed that regions escaping 
global hypomethylation were enriched for heterochromatic (Het) 
marks, including histone H3 lysine 9 trimethylation (H3K9me3) 
and zinc finger protein 57 (ZFP57) binding. This enrichment was 
absent in male embryonic day 16.5 (E16.5) PGCs, consistent with 
known methylation rebound at this stage (37). These findings dem-
onstrate KYCG’s ability to reveal biology at intergenic regions.

We next evaluated whether KYCG captures biology from highly 
sparse single-cell methylomes (200,000 to 1 million CpGs), a common 
scenario when pseudobulk aggregation is limited by biological avail-
ability or cost. In a pairwise comparison between a randomly selected 
single colon tumor cell and an adjacent normal cell, KYCG reveals the 
signature enrichment of hypermethylation at bivalent chromatin, 
marked by H3K27me3 and bound by Polycomb repressive complex 
members [e.g., polyhomeotic homolog 1 (PHC1), polycomb group 
ring finger 2 (PCGF2), jumonji and AT-rich interaction domain con-
taining 2 (JARID2), ring finger protein 1 (RING1), enhancer of zeste 
homolog 2 (EZH2), etc.] (fig. S2A) (38). Hypomethylated CpGs were 
enriched in quiescent (Quies) and Het regions, Hi-C B compartments, 
and WCGWs (fig. S2B), as previously characterized (25). The result is 
robust to cell pairs of different sparsity levels. Notably, the cancer-
specific hypermethylation pattern was robustly detected in extremely 
sparse methylome profiles covering as few as ~12,000 CpGs (~0.05% 
genomic CpGs), showing strong correlation with the most deeply se-
quenced cells (Fig. 2B). Similarly, KYCG also captured cell-type–specific 
differences, with differential methylation between single forkhead box 
protein p2–positive (Foxp2+) neurons and oligodendrocytes enriched 
at enhancer binding sites (fig. S2C) (39).

To assess KYCG’s advantage in sparse methylome analysis, we 
compared it to HOMER, a widely used genomic interval–based en-
richment tool (13). We used the above colon cancer hypermethyl-
ation as our query and tested the enrichment of TF binding motifs. 
KYCG identified biologically relevant motifs, such as caudal type 
homeobox 2 (CDX2), a key player in intestinal differentiation and 
often acting as a tumor suppressor and a prognostic marker (40, 41), 
as well as the FOX family and the androgen receptor ANDR, both 

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 24, 2025



Goldberg et al., Sci. Adv. 11, eadw3027 (2025)     24 October 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  R e so  u r c e

4 of 19

Fig. 2. Application of KYCG to sparse low-input, single-cell, Nanopore, and spatial methylomes. (A) Enrichment analysis of sparse DNA methylomes (~2 million to 
8 million CpGs) during PGC development. (B) Evaluation of 50 pairs of single-cell colon cancer versus adjacent normal methylomes. Spearman correlation of cancer hy-
permethylation enrichment results was tested relative to the least sparse pair (~6 million CpGs), indicated by the red dot. (C) t-SNE visualization of the selected 50 pairs of 
cells for comparison between the KYCG motif database and HOMER using single-cell colon cancer hypermethylation data. (D) Enrichment analysis of cell-type–specific 
H3K27me3 histone modifications of hypermethylated CpGs in bladder cancer (BLCA) and breast cancer (BRCA) TCGA datasets. (E) Neural tube and heart enrichment test-
ing of TFBS from spatial mouse E11.5 embryo data. (F) Heatmap showing cell-specific TFBS methylation identified by aggregating methylation over KYCG knowledge-
bases. Forty-eight cells per major cell-type class are shown as rows, and TFBS knowledgebases are columns. Meth., methylation; t-SNE, t-distributed stochastic neighbor 
embedding; TCGA, The Cancer Genome Atlas.
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implicated in colon cancer (42, 43). Testing the larger DMRs against 
similar TF binding databases (Materials and Methods), HOMER 
missed the colon relevance and picked up general TFs, affecting cel-
lular differentiation and proliferation instead, such as sine oculis 
homeobox 4 (SIX4) and zinc finger protein 41 (ZNF41) (Fig. 2C) 
(44, 45). Notably, when using aggregated pseudobulks, HOMER did 
detect CDX2 and FOX motif enrichment. However, this signal di-
minished with smaller cell numbers (fig. S2D), suggesting that DMR 
calling may dilute the signal in sparse settings.

Furthermore, we observed that cancer-associated hypermethyl-
ation patterns align with the cancer cell’s tissue of origin. For ex-
ample, while hypermethylated CpGs in TCGA bladder cancers were 
broadly enriched for H3K27me3 across many cell types, the stron-
gest enrichment was observed when comparing H3K27me3 marks 
in immortalized urothelium cells. Likewise, breast cancer hyper-
methylation is most enriched in the same mark profiled from MCF7 
breast epithelium cells (Fig. 2D).

To demonstrate KYCG’s broad applicability, we applied KYCG to 
a spatial DNA methylation dataset from a mouse E11.5 embryo 
(Fig. 2E) (46). Methylation differences between cells from two spa-
tial regions (B and H) located near the brain and heart areas on the 
light-field image were analyzed. Differential methylation was pri-
marily linked to embryogenesis-specific TFs, including zinc finger 
proteins, which is consistent with the developmental stage (Fig. 2E). 
Region B hypomethylation was enriched for brain-specific TFs [(e.g., 
peroxisome proliferator-activated receptor delta (PPARD), LIM 
homeobox 1 (LHX1), eomesodermin (EOMES), NK6 homeobox 1 
(NKX6-1), single-minded homolog 2 (SIM2)], while region H hy-
pomethylation was enriched for heart-specific factors such as heart 
and neural crest derivatives expressed 2 (Hand2) (47–49). Notably, 
the brain-specific TF distal-less homeobox 6 (DLX6) was hypo-
methylated in region H, suggesting a preference for methylated 
DNA binding. These results highlight KYCG’s capability to resolve 
region-specific methylation differences and connect them to bio-
logical processes.

Aggregating methylation signals can mitigate missingness in 
single-cell datasets. However, large bin– or continuous genomic in-
terval–based aggregation may obscure biologically relevant trans-
acting features that span multiple genomic sites. Using KYCG’s fast 
aggregation capability (fig. S1F), we analyzed 1188 TFBS knowledge-
bases across 4000 single cells from 20 brain cell types to uncover 
transcriptional networks underlying cell identity (50). Differential 
methylation analysis revealed distinct patterns (Fig. 2F), such as hy-
pomethylation at oligodendrocyte transcription factor 2 (OLIG2), 
SRY-box transcription factor 2 (SOX2), and SRY-box transcription 
factor 8 (SOX8) binding in oligodendrocytes, key regulators of their 
development (51, 52), and at nuclear factor, interleukin 3 regulated 
(NFIL3) and lymphoblastic leukemia derived sequence 1 (LYL1) 
binding in microglia, linked to immune function (53, 54). In addi-
tion, TFBS methylation distinguished superficial cortical neurons 
(L1-3/L2-4) from deeper layers (L4-5/L5-6), highlighting epigenetic 
regulation of cortical layer development. These findings demonstrate 
KYCG’s utility for dimensionality reduction and feature aggregation 
in sparse single-cell data.

KYCG facilitates 5hmC analysis and assesses Oxford 
Nanopore Technologies direct detection
5hmC, an intermediate in 5-methylcytosine (5mC) oxidation and de-
methylation, plays a critical role in epigenetic cell identity. Despite 

its importance, 5hmC exhibits dynamic and sparse distribution 
(55–59). Even in brain tissues, where 5hmC is most abundant, it 
reaches only 10 to 20% of 5mC levels (60), posing substantial chal-
lenges for data analysis (21, 61).

To address the challenges of analyzing sparse 5hmC data, we 
tested KYCG on 5hmC profiles from recent single-cell studies. Us-
ing snhmC-seq2 data (57), we evaluated brain cell types where 
5hmC was measured at only 0.2 to 1% CpGs in astrocytes and oligo-
dendrocytes. Pairwise comparisons revealed that 5hmC differences 
between cell types were enriched in TF binding and genes linked to 
brain cell differentiation programs (Fig. 3A and fig. S3, A and B). 
T-box brain transcription factor 1 (TBR1) and Eomes emerged as 
the most significant TFs discriminating between excitatory and in-
hibitory neurons. The two TFs are essential for the development of 
glutamatergic excitatory neurons in the cerebral cortex and are typi-
cally absent in GABA-releasing inhibitory neurons (62, 63). Besides, 
Myocyte Enhancer Factor 2A (Mef2a), an important transcription 
factor for excitatory neurons (64), emerged as a TF with binding 
significantly enriched at 5hmC differences between excitatory neu-
rons from oligodendrocytes (Fig. 3A).

In nonbrain high-turnover tissues, 5hmC is even scarcer (60), as 
5hmC is a poor substrate for DNA methyltransferase 1 (DNMT1) 
and unmaintained in rapidly dividing cells (65, 66). This ultraspar-
sity leaves the interval and per-locus analysis of genome-wide 5hmC 
patterns largely impractical (61). To assess KYCG’s utility in this 
context, we analyzed 104 human 5hmC profiles across 25 tissue 
types generated using the bACE-array technology (67), applying 
KYCG to evaluate tissue-specific 5hmC signals (Fig.  3B). 5hmC 
sites in proliferative tissues, such as lymphocytes and placenta, were 
enriched near marker genes of corresponding cell types (Fig. 3B). 
For example, the placenta-specific gain of 5hmC is localized to 
ADAM12 and EPAS1, genes expressed in trophoblasts that regulate 
placental vascularization, nutrient availability, and immune toler-
ance (68–70). In lymph nodes, 5hmC was enriched near IGHM, 
IGKC, and other genes involved in B cell signaling and antibody 
production (71, 72). These observations demonstrate KYCG’s versa-
tility in uncovering tissue-specific epigenetic regulation from ultra-
sparse 5hmC datasets.

Oxford Nanopore Technology (ONT) is an emerging approach 
to directly discriminate 5mC, 5hmC, and unmodified C from ion 
current signals (73, 74), bypassing cytosine deamination methods 
that cannot separate 5mC and 5hmC (75). However, ONT’s 5hmC 
detection remains undercalibrated (74, 76), and per-site accuracy is 
difficult to assess due to the sparse and heterogeneous nature of 
5hmC. To address this, we used KYCG to evaluate the biological 
relevance of ONT-based 5mC and 5hmC signals across four mouse 
tissues (lung, blood, uterus, and cortex) profiled with low-pass 
Flongle flow cells (~1 million CpGs per sample).

Our results showed that ONT-derived 5mC and 5hmC maps are 
consistent with established biology. 5mC was enriched at gene bod-
ies (Tx) and Het (Fig. 3C and fig. S3C) (67). From the sparse methy-
lomes, we identified specific methylation patterns contrasting one 
sample against the others. These patterns exhibited tissue-specific 
chromatin state enrichment, such as PromF7 (77) in brain cells and 
EnhA13 (77) in blood and immune cells (Fig.  3D). 5hmC shares 
5mCs’ enrichment in gene bodies but is depleted in Het. Further-
more, 5hmC was enriched at enhancers, where 5mC is depleted, 
highlighting the unique role of 5hmCs in ten-eleven translocation 
(TET)-mediated active demethylation and cis-regulation. The ONT 
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Fig. 3. Application of KYCG to 5hmC analysis and ONT direct detection. (A) Pairwise comparison of 5hmC profiles in major brain cell types (astrocytes, oligodendro-
cytes, excitatory neurons, and inhibitory neurons) derived from snmC-seq2 data. AS, astrocytes; OL, oligodendrocytes; EX, excitatory; IN, inhibitory. (B) Marker gene en-
richment for hyper-5hmC from human bisulfite APOBEC-coupled epigenetic sequencing (bACE)-array data. (C) ChromHMM state enrichment of ONT-derived 5mC and 
5hmC signals across four mouse tissues (lung, blood, uterus, and cortex) and deep ACE sequencing (ACE-seq). (D) Tissue-specific chromatin state enrichment of tissue-
specific 5mC from ONT. (E) Comparison of ONT-derived 5hmC profiles and single-cell 5hmC datasets (SIMPLE-seq and snmC-seq2). ASC, astrocytes; ODC, oligodendro-
cytes; OPC, oligodendrocyte precursor cell; Exc, excitatory; Inh, inhibitory.
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5hmC enrichment patterns closely mirrored deep ACE sequencing 
(ACE-seq) data, supporting its biological accuracy (Fig. 3C). Fur-
ther validation using single-cell 5hmC datasets (SIMPLE-seq and 
snhmC-seq2) showed strong cross-dataset concordance. Compar-
ing these with ONT 5hmC signals, all brain cell types showed high-
er enrichment in brain ONT profiles compared to blood, lung, and 
uterus (Fig. 3E). While limited by the bulk nature of the ONT data, 
these findings support the broad biological relevance of ONT in re-
solving 5hmC landscapes.

KYCG detects cell composition dynamics through 
enrichment testing
DNA methylation has long been established as a robust biomarker 
to discriminate cell types and analyze their composition in hetero-
geneous tissues (78). We reason that enriching methylation changes 
in cell-type–specific methylations would inform cell composition 
dynamics. To test this, we compiled KYCG knowledgebases, each 
holding CpG sites whose methylations discriminate two cell-type 
groups (a cell type contrast), including commonly used “one-versus-
rest” comparisons (Fig. 4A and Materials and Methods). We used a 
nonparametric linear discriminant analysis approach to construct 
these knowledgebases while prioritizing CpGs showing large meth-
ylation differences between the contrasting groups (Fig. 4A).

To verify the quality of cell-type–specific methylation sets, we in-
vestigated their genomic distribution and validated sets across stud-
ies. First, consistent with prior reports (79, 80), cell-type–identifying 
methylation signals were more often based on the absence than the 
presence of methylation in the target cell types (Fig. 4B) and repre-
sent cell-type–specific enhancer chromatin (fig. S4A) (81). Second, 
cell-type–specific methylations likely regulate marker genes of the 
target cell type, suggesting an immediate transcriptional conse-
quence (Fig.  4C). Genomic proximity analysis found that hyper-
methylation knowledgebases are more spatially clustered than the 
hypomethylation sets, suggesting their localization to CpG islands 
and involvement with the target gene expression (fig. S4B). Third, 
using normalized pointwise mutual information (NPMI) to measure 
set overlaps, we found that related cell types from different sequenc-
ing projects were associated with similar methylation signatures with 
concordant directionalities (Fig.  4D). Last, the cell-type–specific 
methylations are linked to cell lineage specification. For instance, 
brain cell methylation signatures are enriched in genes implicated in 
neurodevelopment and the differentiation of the specific neuron or 
glial cell types (fig. S4C).

Some unrelated cell types share methylation changes at overlap-
ping CpG sites, suggesting regulatory network reuse (Fig. 4E). For 
example, inhibitory medial ganglionic eminence (MGE) neurons 
and lung bronchus cells, despite functioning in disparate organ sys-
tems and arising from different developmental origins, shared 
methylation signatures (Fig. 4, E and F). Although unexpected, we 
confirmed that these regions are indeed similarly methylated at the 
NKX2-1 locus and share similar NKX2-1 expression patterns rela-
tive to all other cell types they were compared to (Fig. 4G).

Cell composition dynamics may be mechanisms of methylation 
associations in EWAS studies of bulk tissues. Using our cell-specific 
knowledgebases, we tested whether KYCG could detect cell com-
position changes across disease states. We observed a concordant 
enrichment of trait-associated CpGs in the corresponding cell-type 
signatures (Fig. 4H and table S1B). For example, inflammatory 
bowel disease and Crohn’s disease–associated CpGs were enriched 

in lower gastrointestinal cell markers, while CpGs with type 2 
diabetes–linked methylation showed enrichment in pancreatic cells. 
Similarly, methylation variations interrogated in liver aging and 
hepatocellular carcinoma studies were enriched in CpGs carrying 
hepatocyte-specific methylations. These observations likely reflect 
disease-associated shifts in cell-type proportions or aberrant meth-
ylation at cell identity–linked sites.

KYCG facilitates machine learning model interpretation
DNA methylation–based predictive models have been widely used 
in translational applications. However, interpreting these “black-
box” models remains challenging. We hypothesize that KYCG could 
reveal the workings of predictive models by analyzing model fea-
tures. Below, we focus on epigenetic clocks and cancer classifiers as 
two examples.

We queried eight epigenetic clocks that predict chronological ag-
ing and biological causes that alter organismal aging. First, we ob-
served that different clock models’ features are associated with 
different enrichment terms, potentially reflecting the clocks’ predic-
tion targets (Fig. 5A). The DunedinPACE clock, designed to predict 
the pace of aging from 19 different physiological measures (82), was 
highly enriched in sites with methylations linked to body weight 
and metabolic traits. The EpiTOC clock measures mitotic activity 
(83) and was enriched in cancer studies, partially methylated do-
mains (PMDs), and Polycomb group targets. The Horvath, Levine, 
and Hannum clocks that predict chronological or phenotypic age 
were enriched in aging EWAS studies from independent cohorts not 
seen during training by the respective clock. Bohlin and Knight ges-
tational age clocks (84, 85) were enriched in independent gestation-
al age EWAS studies (86), while the Lee clock (87), trained on 
placental tissues, was also enriched in one gestational age study. 
Similar to EpiTOC, it was also enriched in cancer-associated meth-
ylations, bivalent chromatin, Polycomb group targets, and PMDs.

Besides linking the clock features to related traits, KYCG also 
generated hypotheses regarding the models’ workings. The Lee 
clock enrichment likely reflects placental tissue’s high proliferation 
and cancer-like properties and may explain the poor performance of 
other cord blood–trained clocks on placental samples (87). For the 
Horvath and the Hannum clocks that predict chronological ages, we 
observed enrichments in cell-specific methylations from immune 
cell types such as monocytes, natural killer (NK) cells, and dendritic 
cells (fig. S5A). These enrichments reflect altered blood composition 
during the aging process (88) and are leveraged by epigenetic clocks 
to predict age (89). Compared to other aging clocks, the Bohlin ges-
tational clock was enriched in HOXB genes and histone H3K36me2 
marks (Fig. 5B), suggesting that the clock might have used the 
methylation of homeobox (HOX) genes, which are important for 
gestational development and body patterning (90), and the meth-
ylation gain might be mediated by H3K36me2, which recruits 
DNMT3s via the PWWP domains (91). The same HOXB3 site 
(cg15908709) can also be associated with gestational age in an in-
dependent dataset (fig. S5B) (86), validating this link. Last, KYCG 
found an enrichment of DunedinPACE clock features in overweight 
phenotypes, e.g., body mass index, obesity, and hepatic fat, as well as 
inflammatory disease signaling, e.g., Crohn’s disease, irritable bowel 
syndrome, and C-reactive protein (fig. S5C). Notably, Dunedin-
PACE features are spatially linked to the gene LGALS3BP (Fig. 5C), 
which regulates immune responses in colon epithelial cells (92), 
cancer (93), HIV infection (94), and organ decline (95), suggesting 

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 24, 2025



Goldberg et al., Sci. Adv. 11, eadw3027 (2025)     24 October 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  R e so  u r c e

8 of 19

Fig. 4. Detection of cell composition dynamics through KYCG cell-type–specific DNA methylation signature enrichment. (A) Construction of cell-type–specific 
methylation knowledgebases with contrasts defined as pairwise comparisons of cell-type groups. Dendr., dendritic; Pla., plasma. (B) Chromatin state enrichment of hyper– 
and hypo–cell-type–specific methylation knowledgebases for immune, brain, and pan-tissue datasets. (C) Methylation signatures of cell types are enriched in marker 
genes for the corresponding cell type. (D) Validation of cell-type–specific methylation knowledgebases across datasets using normalized pointwise mutual information 
(NPMI). (E) Shared methylation signatures between unrelated cell types. CGE VIP, caudal ganglionic eminence vasoactive intestinal peptide–expressing interneurons. 
(F) Comparison of local methylation environment analysis at the NKX2-1 locus for inhibitory neurons and lung bronchus cells with other cell types. (G) Expression analy-
sis of NKX2-1 across 79 cell types. nTPM, normalized transcripts per million. (H) Heatmap showing enrichment of EWAS hit CpG sets in cell-specific methylation CpG sets. The 
–log10 FDR values from the enrichment tests are z-score normalized within each trait (columns). Trait-related methylation enriches the cell types where the trait manifests. 
MSC, mesenchymal stem cell; GI, gastrointestinal.
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Fig. 5. Machine learning model interpretation with KYCG. (A) Enrichment testing of eight epigenetic clocks reveals feature-specific associations with chromatin states 
and 17 EWAS studies. P values are based on Fisher’s exact tests before FDR correction. (B) Bohlin gestational age clock features enrichment in HOXB gene clusters and 
H3K36me2 histone modifications. OR, odds ratio. (C) Enrichment of DunedinPACE clock probes in genes and chromatin states. (D) Enrichment analysis of high- and low-
importance CpG features from cancer classifiers. (E) Differential methylation enrichment analysis between correctly and incorrectly classified tumor samples. (F) Misclas-
sified meningiomas compared to correctly classified tumors reveal CpG enrichments in neuronal, endothelial, and microglial signatures. P values are based on Fisher’s 
exact tests before FDR correction. (G) Heatmap of TNXB-associated methylation differences between correctly and incorrectly classified meningiomas. TNXB, tenascin XB.
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a potential mechanism of the clock tracking diseases via the epigen-
etic regulation of a key circulating glycoprotein.

We next asked whether KYCG could help interpret cancer classi-
fiers (96). We trained a random forest classifier on 2801 public brain 
tumor methylomes from more than 80 tumor classes (Materials and 
Methods). KYCG found that features with the highest importance 
scores were enriched in enhancers and actively transcribed genes, 
whereas less important CpGs were more enriched only in gene bod-
ies (Fig. 5D). This highlights that the tumor cells of origin and the 
regulatory network underlying the cell identity difference are the 
main signal sources in cancer classification.

Furthermore, KYCG can help explain misclassifications. For ex-
ample, we compared five correctly classified meningiomas to five 
misclassified tumors (Materials and Methods), separated by the lead-
ing principal component (Fig. 5E and fig. S5D). The 200 CpGs with 
the greatest positive loading scores along the leading principal com-
ponent were enriched in neuronal, endothelial, and microglia signa-
tures, suggesting that these samples may have different cells of origin 
(Fig. 5F). Linear modeling between the classification groups identi-
fied 30,686 differentially methylated CpGs that distinguished correct 
classification and misclassifications. These CpGs were enriched in 
TNXB (Fig. 5, F and G), which was previously shown to be differen-
tially methylated across the dura and leptomeningeal layers of the 
meninges (97). This suggests that the misclassification likely reflects 
meningiomas originating from different leptomeningeal layers.

KYCG detects technical confounders in single-cell and 
EWAS datasets.
Hidden technical confounders mislead methylation biology inter-
pretation (8, 98) and can be hard to detect even for experienced re-
searchers. The KYCG knowledgebases include CpG sets linked to 
sequencing- and array-specific artifacts, e.g., methylation measure-
ments influenced by genetic variations or poor coverage uniformity, 
to enable automatic sanity checks (Fig.  1C). To demonstrate this 
utility, we first applied KYCG to analyze 12 single-cell methylation 
studies on mouse tissues using eight assay technologies (Fig. 6A). 
Clustering these single-cell methylomes by their genomic feature 
enrichments revealed the impact of profiling technology on cover-
age uniformity (Fig. 6A). Most single-cell methylome datasets are 
biased in coverage toward CpG-dense regions, e.g., the transcription 
start sites (Tss/TssBiv), and depleted in Het and Quies regions, al-
though most library preparation protocols do not intentionally en-
rich specific genomic regions. As a positive control, this bias is most 
prominent in single-cell reduced-representation bisulfite sequenc-
ing (scRRBS) and single-cell extended representation bisulfite se-
quencing (scXRBS), as they explicitly target CpG-dense regulatory 
regions (99). iscCOOL (100), scCOOL (101), and sciMETv2 (102) 
showed a reverse depletion pattern in CpG-rich regions and slight 
enrichment in Het (Fig. 6A). This reversed nonuniformity was po-
tentially linked to adopting a tailing and ligation method as opposed 
to the usual postbisulfite adaptor tagging (100). Technologies based 
on the isolated nuclei (e.g., snmC-seq) are depleted in mitochon-
drial CpGs, while those that profile total cellular DNA are enriched 
in the mitochondrial genome, reflecting their high copy number 
(fig. S6A). We integrated two single-cell brain datasets profiled us-
ing two different assay technologies. We found that cells of the same 
cell type form different clusters. KYCG revealed that the difference 
is primarily linked to the bias in capturing different chromatin fea-
tures, with Luo et al. (50) better capturing the Quies regions (Fig. 6B) 

and being slightly more depleted in TssA/TssFlnk chromatin states, 
particularly in neurons and oligodendrocytes, compared to the sites 
covered in Lee et al. (121) (fig. S6, B and C).

Genetic polymorphism and sequence mappability can substan-
tially affect methylation array measurement but are often over-
looked. To demonstrate KYCG’s utility in detecting such artifacts, 
we used a methylation titration dataset to identify probes whose 
methylation readings are uncorrelated with the known titrated 
methylation fractions. KYCG found an enrichment of these probes 
in probes with known sequence mismatches, single-nucleotide 
polymorphism (SNP) probes, non-CpG methylation probes, nega-
tive control probes, and probes with suboptimal or nonunique map-
pings (e.g., targeting repetitive elements;  Fig.  6, C and D). These 
enrichments suggested that probe sequence artifacts contributed to 
the probes’ poor performance, as revealed by the titration experi-
ments. Furthermore, we checked array probes with variable signal 
intensity in a dataset of nonmalignant human tissues. KYCG identi-
fied the enrichment of such probes with mapping and color channel 
artifacts, suggesting an immediate consequence of probe hybridiza-
tion and base extension (fig. S6D). Last, we applied KYCG to check 
CpG sets supposedly associated with ancestry, as in a previous study 
(104). We observed that these CpGs are significantly enriched in 
methylation readings influenced by human genetic polymorphisms 
(Fig. 6E), highlighting the critical need to distinguish true methyla-
tion quantitative trait loci (meQTLs) or ancestry-linked DNA meth-
ylation from measurement artifacts. Our experiment demonstrated 
the utility of KYCG in conveniently detecting technical confounders 
in sanity-checking EWAS discoveries.

DISCUSSION
Efficient enrichment testing tools are critical to the effective learn-
ing of omics datasets. CpG sites are the base units for DNA methyla-
tion data with a fixed length of 2 base pairs (bp) and a globally 
depleted prevalence, presenting an intrinsic sparsity. Gene-centric 
and DMR-based methods, originally designed for other omics data 
types (13, 14, 105), may be insufficient at fully capturing methyla-
tion biology. Gene-centric methods suffer from a CpG-gene linkage 
challenge and do not cover intergenic changes, which are now also 
known to have a regulatory role. On the other hand, DMR-based 
approaches assume that the methylations of nearby CpGs vary at a 
certain genomic scale, are coregulated by common chromatin fea-
tures, and should be analyzed as units. However, this assumption 
can break down when methylation biology functions at finer or 
broader genomic scales. For example, TFBS often span just 5 to 30 
nucleotides and may involve only single CpGs. In such scenarios, a 
base-level approach, as in KYCG, can be more sensitive at capturing 
fine-scale patterns. KYCG benefits not only sparse but also non-
sparse datasets in providing multiscale interpretations of discrete 
methylation datasets.

Furthermore, many population-scale epigenetic studies operate 
within a “CpG subspace,” such as that set by Infinium microarray de-
sign. CpG-indexed enrichment analysis is well suited for these con-
texts, as implemented by existing tools (31, 32). However, a unified 
framework that generalizes across data types—including sequencing-
based assays that may (e.g., WGBS) or may not (e.g., RRBS) target a 
fixed CpG set—has been lacking. Toward this goal, we conducted 
in silico experiments to evaluate the stability of enrichment testing 
across different CpG subspaces. Our analysis suggests that, when the 
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Fig. 6. Technical confounder discovery with KYCG in single-cell and EWAS datasets. (A) Coverage biases in single-cell methylome technologies of 12 single-cell 
methylation studies using eight assay technologies. (B) Technical variations in three single-cell brain methylation datasets. t-SNE plots illustrate clustering by assay tech-
nology and differential capture of chromatin features. (C and D) Identification and enrichment of probes with poor correlation to methylation titration in the mouse array 
(C) and the human methylation screening array (D). exp., experiment; Pop., population. (E) Detection of ancestry-associated artifacts in EWAS datasets. P values are based 
on Fisher’s exact tests before FDR correction. FC, fold change.
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proper testing universe is used, enrichment results from array-defined 
CpG subspaces faithfully track results from whole-genome datasets, 
except in extremely sparse scenarios (Fig. 1E). The results likely de-
pend on the query and knowledgebase sets. Using CTCF binding sites 
as the query, we observed a slight reduction in the number of signifi-
cant terms relative to uniformly downsampled data of similar genome 
coverage (Fig. 1E). This is likely due to array-based spaces being bi-
ased toward genic and enhancer regions, which may miss intergenic 
signals. Nonetheless, the top enriched terms remain stable. As meth-
ylation microarrays have much smaller CG subspaces, this resilience 
of enrichment to sparsity would justify the adoption of an array tech-
nology for lower experimental and computational costs.

A key strength of KYCG is its unified design that integrates data 
with curated resources, agnostic to assay platforms. For common ar-
ray platforms (67, 106–110), KYCG precomputed knowledgebases 
indexed by CpG probe IDs (“cg” numbers). For sequencing data–
based knowledgebases, KYCG dynamically sets the appropriate 
background universe based on the query scope. This flexibility en-
ables consistent enrichment analysis across both array and sequenc-
ing platforms, facilitating integration of data with knowledge derived 
from diverse assay types.

Beyond defined CpG subspaces, KYCG scales base-level inter-
pretation to highly sparse DNA methylome datasets, including 
single-cell (e.g., snmC-seq or sci-MET) and spatial methylomes 
(e.g., Spatial-DMT) (46). These assays offer high-resolution insights 
but suffer from signal dropout and low per-site coverage, limiting 
traditional DMR-based approaches. Aggregation to pseudobulks 
can also be challenging when not enough cells of the cell type are 
captured. KYCG offers a solution for studying “dirty” differential 
methylations where the difference per locus is not statistically exam-
ined and DMR boundaries are murky. This strategy may also benefit 
biological scenarios of global but subtle methylation changes, e.g., 
methylation reader defects (111).

Key to the feasibility of comprehensive testing is the efficiency of 
KYCG in scanning the whole genome. Compared to gene enrich-
ments focusing on ~30,000 human genes, enumerating ~28 million 
CpGs imposes a major computational hurdle to CG-based enrich-
ment testing. When the knowledgebases are small and CGs can be 
indexed in the CG subspaces, one could adopt the traditional ap-
proach of set comparisons. However, a more efficient approach is 
needed when the queries and knowledgebases become larger. Here, 
we explored both pathways for addressing this hurdle and provided 
flexible computational solutions. We index the CGs based on the 
genomic coordinates for large queries and knowledgebases and use 
a vectorized counting approach to calculate the set overlaps quickly. 
This substantially enhanced the performance of set comparisons 
and enabled the efficient testing of thousands of knowledgebases. 
The same idea can apply to 5hmCs and non-CpG methylations, 
which are greater in number and more memory demanding. More 
powerful compression methods may be used to further enhance 
computational efficiency.

In implementing KYCG’s strategy, we noted that CpG-indexed 
enrichment testing requires both query and knowledgebase sets, 
and potentially the universe sets, to share the same CpG index. This 
is likely the reason some tools such as HOMER natively do not sup-
port 2-bp queries. While tools such as LOLA (17) can accept 2-bp 
queries, bias arises if the knowledgebases remain interval based. 
Converting these intervals to 2-bp resolution eliminates the bias but 
greatly increases storage and computation time without efficient 

indexing, limiting scalability to large numbers of databases. For 
example, comparing the end-to-end run time of KYCG and LOLA 
in performing the analysis described in Fig. 2B, KYCG was sub-
stantially more efficient (fig. S6E), although the two tools produced 
similar results.

Automated sanity checks against colinear biology and technical 
confounders, which may contribute to observed trait associations, 
are a pressing need even for seasoned scientists. For example, copy 
number polymorphism has masqueraded as epigenetic silencing 
events (98). Leukocyte contamination may confound the discovery 
of cancer-associated epigenetic silencing (112). Global methylation 
variation linked to proliferation and impaired DNMT recruitment 
can be misinterpreted as altered epigenetic aging (25,  113). CpG-
rich genomic features, e.g., CpG islands, canyons, and nadirs, over-
lap extensively and share similar methylation biology, such as 
mitotic hypermethylation. KYCG represents a step toward address-
ing this challenge and allows one to check these collinear associa-
tions by automatically testing genomic colocalization and comparing 
enrichment levels. For example, our analysis demonstrated that one 
can dissect the cell-type context by comparing enrichment levels of 
the same histone modification features but in different cell types. We 
also cautioned array-based meQTL discovery due to SNP-originated 
reading artifacts (22). Further expanding and improving the com-
prehensive collection of knowledgebases is critical to keeping aware-
ness of all hidden biological and technical links.

MATERIALS AND METHODS
Whole-genome encoding and compression via YAME
The KYCG framework is designed to streamline whole-genome–wide 
CpG encoding, data storage, and statistical analyses, leveraging ef-
ficient compression and parsing capabilities provided by its core 
component, YAME (Yet Another MEthylation analysis tool). To 
minimize storage requirements, genomic coordinates are not ex-
plicitly stored. Instead, all knowledgebases and query datasets are 
preprocessed and indexed according to a default ordering of CpGs 
based on the reference genome (e.g., GRCh38), with or without con-
tig information. The genomic coordinates are compactly stored 
separately and can be flexibly combined or built using generic tools 
such as AWK and BEDTools (35). This coordinate-free design re-
duces redundancy while ensuring consistency across datasets.

YAME, the command-line tool within KYCG, handles the en-
coding, parsing, and compression of CpG-related data. A combina-
tion of bit-packing, Run-length encoding, and the DEFLATE 
algorithm is used for sparse methylomes dominated by zeros, sub-
stantially reducing file sizes for optimal storage, inflation, and ac-
cess. Categorical data, such as sequence context or chromosome 
annotations, are compressed using a specialized state encoding 
scheme. This separates textual state definitions from indices, opti-
mizing repetitive patterns for space savings. For methyl-seq data, 
YAME uses a unique MU specification, where methylated (M) and 
unmethylated (U) read counts are stored in a 64-bit integer. The up-
per 32 bits represent the methylated allele (M), and the lower 32 bits 
represent the unmethylated allele (U). This encoding is both space 
efficient and computationally optimized. These integers are further 
compressed, ensuring compact storage for large datasets.

YAME also enables flexible data manipulation. It supports com-
bining multiple knowledgebases or datasets into a single indexed file, 
enabling random-access queries with constant time complexity. For 
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extending datasets to higher dimensions (e.g., non-CpG methylation 
signals or larger genomes), YAME supports data inflation to different 
levels of precision. This feature allows it to function efficiently in 
memory-constrained environments. Furthermore, YAME provides 
extensive functionality for data manipulation, including efficient sub-
setting of sites and samples, aggregation, masking, downsampling, 
chunking, and performing rowwise operations. These features make 
YAME a versatile tool for preparing and analyzing complex datasets.

Comprehensive CpG annotation
Multilayer CpG annotations are organized as knowledgebases, en-
compassing 12,114,567 CpG-indexed datasets systematically cu-
rated for automated discovery and analysis (see Data and materials 
availability). This annotation integrates data from human and 
mouse genome sequences, annotations, and extensive public re-
sources, including 11,806 bulk and 480,012 single-cell sequencing 
and array-based profiling studies, as well as EWAS projects (ta-
ble S1A). The annotations are organized into four broad categories 
of testing domains: (i) sequence features: includes k-mers, tetranu-
cleotides, and TF binding motifs; (ii) genomic features: includes 
chromatin states, histone modifications, gene associations, local 
modules of CpGs correlated in methylation levels across tissues, 
transposable elements, TFBS, and evolutionary conservation; (iii) 
trait associations: includes cell-type–specific methylation, human 
EWAS associations, and epigenetic clocks; and (iv) technical asso-
ciates: includes sequence maskers, array hybridization artifacts, 
and extension masks. Each testing domain includes a varying num-
ber of CpG sets linked to biological and technical ontologies.

Sequence features: This category includes key sequence composi-
tion metrics such as CpG density, GC fraction, sequence motifs, and 
k-mer contexts. Transcription factor binding models were obtained 
from HOCOMOCO (114), and motif locations in the human and 
mouse genomes were identified using the FIMO tool from the 
MEME suite (115). These motif locations were extended by ±10 bp 
to define corresponding CpG sets. Tetranucleotide sequence con-
texts were integrated with three-dimensional (3D) chromatin com-
partment data to capture CpG sets associated with biologically 
relevant features, such as PMD solo-WCGW sequences, which are 
indicative of replicative methylation loss (25), and other sequence 
contexts known to be more subject to biased DNMT (116) or TET-
mediated modifications (117). For most sequence feature knowl-
edgebases, including tetranucleotide contexts, CpG references were 
standardized by merging the C and its complementary palindromic 
G. In addition, stranded CpG sets were constructed to assess strand-
specific preferences for hemimethylation and non-CpG methylation, 
providing deeper insights into sequence-context–specific meth-
ylation patterns.

Genomic features: CpG sets were characterized across genomic 
scales, from large-scale features such as Hi-C AB compartments and 
topologically associating domain (TAD) domains to smaller-scale 
events such as histone modifications and TFBS. ChromHMM an-
notations, TFBS, and histone modifications were used to construct 
both consensus and cell-type–specific knowledgebases. Data were 
sourced from Cistrome (118) and ReMap 2022 (103), which integrate 
ENCODE data. The peaks were intersected with human and mouse 
reference genome CpG coordinates. The top 50,000 to 100,000 CpGs 
with the highest overlap frequencies (including variations due to ties) 
were selected to construct consensus TFBS and histone modification 

knowledgebases. Different consensus ChromHMM annotations were 
taken from the human and mouse data generated in the Roadmap 
Epigenomics Mapping Consortium (119) and ENCODE (24,  120), 
targeting primary tissue and cell lines, respectively. To address the 
underrepresentation of cell-type– or tissue-specific chromatin states 
(e.g., enhancers or promoters) in consensus annotations, full-stack 
ChromHMM segmentation (77, 81) was incorporated to construct 
CpG-indexed knowledgebases for specific cell or tissue types. These 
were refined into MU-style knowledgebase sets by calculating the fre-
quency of CpG overlaps across samples to capture consensus and spe-
cific features. Additional features include the integration of the 
PhastCons evolutionary conservation score to capture conservation 
metrics and indexing metagene data relative to gene coordinates for 
positional annotations of CpGs within genes. Gene links were de-
rived for CpGs within a region from 10-kb upstream TSS to tran-
scription termination sites. Enhancer-overlapping subsets were 
constructed on the basis of CpGs in regions marked by H3K4me1 
and H3K27ac and the absence of H3K4me3, defining active enhanc-
ers. These annotations enable quick data summaries, such as using 
metagene knowledgebases for generating metagene plots and flank-
ing sequence sets for sequence logo visualizations, ensuring compre-
hensive and flexible genomic analyses.

Trait associations: This category includes cell-type–specific meth-
ylation as identified by single-cell and sorted cell methylome profiles 
and those linked to human traits, as primarily identified from previ-
ous array experiments. To construct cell-specific CpG knowledge-
base sets, BED/bigWig files for single-cell brain (50, 78, 121), sorted 
pan tissue (79), and sorted immune cell WGBS (122) data were 
downloaded and used for marker identification. To reduce the spar-
sity of single-cell brain data, pseudobulk methylomes were generat-
ed by averaging methylation over the cell-type labels obtained by 
previously reported unsupervised clustering analysis. To define cell 
signatures, we first developed 1038 contrast groups (table  S2) by 
manually curating the hierarchy of cell types, each defining a sample 
set. The curation was guided by global methylome similarity and 
biological knowledge (Fig. 4A). We then investigated every pair of 
sample sets across major cell-type groups and hierarchically within 
major groups. Targeting these contrast groups, we performed a non-
parametric discriminant analysis as follows: Pairwise Wilcoxon rank 
sum testing was performed between the target and the background 
groups at each CpG site to identify cell-specific markers. CpG sites 
with an area under the curve (AUC) >  0.95 and a difference in β 
value of >0.5 between the target and the background groups were 
selected. Cell signature knowledgebases were tested for enrichment 
against consensus and full-stack ChromHMM knowledgebases in 
KYCG using the testEnrichment function. For human trait associa-
tions, 1067 EWAS studies were curated from the literature and 
EWAS databases [EWAS catalog (123) and EWAS atlas (124)] and 
converted to knowledgebases by intersecting the trait-associated 
CpG probes with each array platform.

Technical associates: This category includes CpG groups useful 
for controlling data quality in sequencing and array experiments. 
Besides checking for sex and mitochondrial chromosome enrich-
ment, sequence-based knowledgebases include the ENCODE exclu-
sion list (125), centromeres, telomeres, and micro- and macrosatellite 
sequences. Probe array masks were obtained from previous studies 
(9). Briefly, they cover probe hybridization and extension artifacts 
due to sequence polymorphism and nonuniqueness.

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 24, 2025



Goldberg et al., Sci. Adv. 11, eadw3027 (2025)     24 October 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  R e so  u r c e

14 of 19

Knowledgebase cross-validation
The curated CpG knowledgebases are diverse in biological category 
and size (fig. S1B). To understand the redundancies and relation-
ships between the knowledgebase sets, we computed the NPMI, a 
statistical measure of co-occurrence (−1  =  never, 0  =  indepen-
dence, and 1 = always co-occurs) for each pair. Figure S1C shows a 
graph of a small subset of intergroup knowledgebase sets sharing the 
highest NPMIs (>0.5) across all computed pairs. The remaining 
edge list was graphed in Cytoscape (126) version 3.9.1 with the Pre-
fuse Force Directed layout. NPMIs between histone modifications 
were graphed in ComplexHeatmap (127) version 2.19.0. Although it 
was not uncommon for knowledgebases from different groups to 
share some CpG sites after thresholding for NPMI, five general 
communities emerged: (i) CpG islands and TSS, (ii) gene bodies, 
(iii) Het regions, (iv) bivalent and polycomb repressive complex 2 
(PRC2) targets, (v) CTCF binding sites, and (vi) enhancer-like ele-
ments. NPMI was also computed for every cell-signature knowl-
edgebases. Sets with an NPMI >0.4 were selected for visualization 
using the Circlize package (version 0.4.15) (128).

We explored the overlap of the 83 histone modifications and 
1188 TFBS knowledgebases with ChromHMM genomic features. Re-
lated histone modification–overlapping CpG sets are clustered to-
gether based on NPMI, forming distinct groups (fig. S1D). Notably, the 
promoter group is overrepresented by various activating histone 
acetylation and H3K4me3 marks. Other histone modification–
overlapping CpG knowledgebases are organized into broad catego-
ries representing bivalent chromatin, gene transcription, and Het 
(fig. S1D). Transcription factor binding sites rarely co-occurred 
with Het and Quies regions, with mean NPMIs of −0.244 and 
−0.236, respectively. A total of 161 TFs of the 1188 (13.6%) did not 
have an NPMI > 0.25 with any ChromHMM feature. This group of 
TFs was enriched in the ZNF family of proteins (P = 9.952 × 10–10; 
Fisher’s exact test), and gene ontology analysis revealed enrich-
ment relating to DNA replication. Of the remaining TFs, 944 
(79%) showed the highest NPMI with TssA, consistent with TFs 
generally binding adjacent to promoters. A total of 31 (3%) TFs 
displayed the highest preference for EnhA1 regions, 21 (2%) for 
TssBiv regions, 13 (1%) for genic enhancers (EnhG2), 10 (0.8%) 
for TssFlnkU, 4 for Tx, and 3 for ZNF_OR_Rpts. Overall, TFs are 
generally localized with Tss elements and enhancers (fig. S1E). 
TFBS-overlapping CpGs were analyzed across multiple experi-
ments, aggregating overlaps to compute NPMI with ChromHMM 
features. TFBS with NPMI > 0.25 were grouped by their highest 
NPMI ChromHMM feature. Gene Ontology analysis for TFs in 
each group was performed using Enrichr (129). This validates the 
construction and confirms the expected biological relationships 
among the knowledgebases.

To validate cell-type–specific signatures, each knowledgebase 
was first tested for enrichment in gene knowledgebases within 10 kb 
of the query CpGs, identified with the buildGeneDBs function. En-
riched genes [false discovery rate (FDR) < 0.05; Fisher’s exact test] 
for each signature branch were overlapped with the marker genes 
for each nontumor human cell type from the CellMarker2.0 data-
base (130), and cell types from pairs that had four or more overlap-
ping genes were selected for visualization in ComplexHeatmap 
(version 2.19.0) (127). For brain cell enrichment testing, one versus 
all signatures for excitatory neurons, inhibitory neurons, and glia 
were tested for enrichment against gene (identified with build-
GeneDBs), consensus ChromHMM, and TFBS knowledgebases.

CpG set enrichment testing
Building on YAME’s ability to rapidly compute CpG counts and 
overlaps (with an optional universe set constraint), the KYCG R/
Bioconductor package provides statistical analysis functionalities 
and visualization for enrichment results. For pairwise methylome 
analysis, the YAME’s pairwise function efficiently identifies differen-
tial methylation CpG sets (DMCs) that represent various contrasts 
(e.g., hypermethylation, hypomethylation, or both combined) with 
customizable filters, using the set of CpGs involved in the com-
parison (covered in both profiles and comparable) as the universe. 
KYCG uses the hypergeometric distribution as the null hypothesis 
for enrichment testing. The package supports fast calculation of 
Fisher’s exact test statistics (via R’s phyper function) and FDR cor-
rection, offering one- and two-sided testing options. While efficient, 
this test assumes statistical independence among CpGs. Multiple 
test corrections, by default via Benjamini-Hochberg, are done with-
in each testing domain to avoid domain size imbalance. This is justi-
fied by the distinct hypothesis space with different term counts, 
biological relevance, and structural organization.

In addition, KYCG uses a gene set enrichment analysis–like 
strategy to compare set-based query or knowledgebases and continu-
ous vector variables on a defined universe. Significance is assessed 
using a Kolmogorov-Smirnov test on the permuted null distribu-
tion, with a Gaussian approximation of the null offered as an effi-
cient alternative for large query or knowledgebases. In addition, the 
framework integrates gene-CpG associations, enabling pathway-
level analyses of genes linked to enriched CpGs. A suite of visualiza-
tion tools, including dot plots, waterfall plots, volcano plots, and 
track plots, is available to ensure a clear and interpretable presenta-
tion of results. Enrichment testing considers a universe set built for 
each experiment. YAME binarize and YAME pairwise function con-
veniently produce a paired target and universe set from data for sub-
sequent enrichment testing.

KYCG performance and stability
For each platform (whole genome, EPIC, and HM450), random 
queries of 1 million, 0.5 million, and 0.1 million were generated by 
sampling (with replacement when necessary) the respective plat-
forms’ universe space. The queries were tested for enrichment in 
consensus ChromHMM features, using the respective platform as 
the background universe space. Testing for each query size–platform 
pair was repeated 100 times. Compute times for set-based testing 
in R were measured using the Sys.time() function. For vectorized 
testing, the command-line time function was used. Compute times 
were measured only for the Fisher’s exact testing process and not the 
time elapsed for I/O of the knowledgebase and universe files or que-
ry generation. Memory usage was tested using the same queries and 
ChromHMM features. Maximum resident set size was recorded 
with time -f “%M” parameters for the maximum memory usage 
from the time of loading files to testing enrichment. To compare 
whole-genome computing of enrichment statistics, BEDTools inter-
sect (v2.30.0) was used to intersect query and knowledgebase sets 
using the -sorted option, followed by counting in AWK (v5.1.0). For 
methylation aggregation over knowledgebase sets, BEDTools inter-
sect and groupby functions were used. Enrichment statistics and 
methylation aggregation in KYCG were both computed using the 
yame summary -m function.

CTCF binding sites were identified from ENCODE chromatin 
immunoprecipitation sequencing data (131) and intersected with 
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the reference genome (GRCh38) CpG coordinates to use as a query 
for enrichment testing in ChromHMM features. The GRCh38 refer-
ence genome CpG space was uniformly downsampled by factors of 
2, 22, 24, 26, 28, 210, 212, and 214 to create universe subsets for enrich-
ment testing. RRBS data from 17 tissues were downloaded from 
ENCODE (24). Fifty iterations of downsampling and enrichment 
testing were performed for each universe size and type. RRBS and 
array data were not downsampled.

Genomic proximity testing
Proximity testing of hyper- and hypomethylated CpG markers was 
modeled with a Poisson distribution with a λ parameter representing 
the number of CpGs occurring in fixed 1500-bp intervals. For a given 
query set of CpGs, a null distribution was generated by performing 
1000 simulations of random samples of equal size to the query and 
calculating the mean number of events (CpGs co-occurring in a 
1500-bp interval) as the λ parameter. This λ was used as the Poisson 
point estimate to compute the probability for the number of co-
occurrences in the query set.

Benchmarking datasets
Nucleosome occupancy and methylome sequencing (NOMe-seq) 
data from PGCs were downloaded from a prior study (132). Methyl-
ated CpGs (methylation fraction ≥ 0.3, minimum coverage = 1) were 
used as a query for enrichment testing against full-stack Chrom-
HMM, histone modification, and TFBS knowledgebase sets using 
all CpGs with non–not available (NA) values for each sample as the 
universe. Enrichment testing was performed using the YAME sum-
mary function.

Single-cell DNA methylome data from Bian et al. (38) and Liu 
et al. (39) were downloaded and stored using YAME. Fifty pairs of 
cells were randomly selected, and methylation differences were cal-
culated to define hyper- and hypomethylated sites (methylation dif-
ferences of 1 or −1). The universe set is defined as sites covered by 
both cells. Spearman correlation was used to compare the enrich-
ment ordering of the sampled pairs with the most deeply sequenced 
pairs (i.e., the pair with the greatest number of CpGs covered in both 
cells). Differential methylation regions were merged from differen-
tially methylated sites within 10-kb windows and used as inputs for 
HOMER (13) motif analysis via findMotifsGenome.pl. For TFBS 
analysis, single-cell data were downloaded from Luo et al. (50), and 
methylation was aggregated over the 1188 TFBS knowledgebase sets 
using the YAME summary function. Cells were grouped according 
to the major class label reported by the authors. Wilcoxon rank sum 
testing was performed between the target cell type and the back-
ground groups at each TFBS feature, and each TFBS that discrimi-
nated the target cell type with an AUC of 0.8 or higher was selected 
for further analysis.

Cancer WGBS data were obtained from TCGA. Two cancer types 
(bladder and breast cancer) were selected. Compared to adjacent nor-
mal tissues, hypermethylated sites were tested against cell-type–specific 
histone modification features. Pseudobulks from spatial embryo E11.5 
methylation data were merged for the heart and neural tube regions 
(3 × 3 pixels), and methylation differences were tested to demonstrate 
cell-type–specific TFs.

For 5hmC and Oxford Nanopore sequencing analysis, SIMPLE-
seq (133) and snhmC-seq (57) datasets were downloaded and pro-
cessed into YAME-compatible formats. Pseudobulks were merged for 
each major brain cell type. Pairwise comparisons of the snhmC-seq 

data among the four major brain cell types were conducted using the 
YAME pairwise function, focusing on 40% or more methylation dif-
ferences. ONT 5mC and 5hmC data (Supplementary Materials) were 
analyzed against chromatin states across four distinct cell types. ACE-
seq (134) data from embryonic stem cells were used as a benchmark 
to validate ONT 5hmC enrichment.

For 5hmC array-based analyses, bACE-array data were obtained 
from a previous study (67). One-versus-all comparisons were per-
formed for the displayed tissue type groups using Wilcoxon rank 
sum testing between the target and the background group at each 
CpG site. CpG sites with 5% or more methylation differences and 
an AUC > 0.8 for discriminating the target tissue type were con-
sidered for further analysis. Marker CpGs were linked to genes 
(GENCODEv19) ±1500 bp from the CpG site. Linked genes for 
each tissue type were tested for enrichment against the CellMarker 
2024 and Human Gene Atlas gene ontology databases using Enrichr 
(129, 135).

For RNA expression comparisons, cell-type–specific RNA se-
quencing count data were downloaded from the Human Protein 
Atlas “RNA single-cell type data” database (136), and expression 
levels of NKX2-1 were log transformed and plotted across 79 cell 
types. To evaluate KYCG’s capacity for screening array probe arti-
facts, we used methylation titrations from prior studies (34, 67, 137). 
β values from 10 mouse DNA samples with varying methylation 
titration levels (0, 5, 10, 25, 50, 75, and 100%) generated by Epi-
genDx (137) were used to test the correlation between beta values 
and methylation titrations. For each CpG on the MM285 array, 
Pearson’s correlation was computed between the methylation read-
ing and the expected methylation level of the titration. CpG probes 
with a correlation coefficient < 0.9 were used as a query to test en-
richment in MM285 technical database sets.

EWAS and predictive model feature interpretation
EWAS trait associations were downloaded from databases (123, 124), 
and associated CpGs were converted into knowledgebases by inter-
secting each trait CpG set with array manifests. Each one-versus-rest 
cell-type–specific methylation knowledgebase was tested for enrich-
ment against the HM450 EWAS trait knowledgebase using the testEn-
richment() function, and the top six most significantly enriched traits 
were plotted for each cell type. Epigenetic clock CpG query sets were 
downloaded and tested against EWAS trait, gene, cell-type–specific 
methylation signature, chromHMM, histone modification, and PMD 
knowledgebases under each clock’s respective assay platform. Gesta-
tional aging methylation data were downloaded from Koeck et  al. 
(86). The Pearson correlation coefficient was computed between the 
methylation of the clock CpGs in the HOXB3 gene on the EPIC array 
and the corresponding sample’s gestational age.

To analyze the central nervous system tumor classifier features, 
data from Capper et al. (96) were downloaded and preprocessed us-
ing the SeSAMe package (98). The 32,000 most variable CpGs were 
used as features to train a random forest classifier using the random-
Forest package in R with default parameters. The reference cohort of 
2801 samples was used for training, and testing was performed on 
1100 samples from the prospective cohort. Importance scores for 
classifier features were ranked according to the decrease in the Gini 
index for each CpG. The top and bottom 16,000 CpGs based on the 
Gini index are considered high- and low-importance features. Dif-
ferential methylation analysis between correctly and incorrectly 
classified meningioma samples was performed using the SeSAMe 
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DML() function, and differentially methylated CpGs were tested for 
enrichment against all knowledgebases. Visualization of the TNXB 
gene was performed using the SeSAMe visualizeGene function.

Supplementary Materials
The PDF file includes:
Figs. S1 to S6
Legends for tables S1 and S2

Other Supplementary Material for this manuscript includes the following:
Tables S1 and S2
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