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Abstract 

Background:  DNA cytosine modifications, including 5-methylcytosine (5mC) 
and 5-hydroxymethylcytosine (5hmC), are key epigenetic regulators with distinct 
functions. Dissecting the ternary code (C, 5mC, 5hmC) across tissues and cell types 
remains a critical priority due to the limitations of traditional profiling methods based 
on bisulfite conversion.

Results:  Here, we leverage the combined bisulfite and enzymatic (bACE) conversion 
with the Mouse Methylation BeadChip to generate 265 base-resolution ternary-code 
modification maps of 5mC and 5hmC across 29 mouse tissue types spanning 8–76 
weeks of age and both sexes. Our atlas reveals a complex grammar of 5hmC distribu-
tion, jointly shaped by cell mitotic activity, chromatin states, and interplay with 5mC 
at the same and neighboring CpG sites. Of note, we demonstrate that 5hmC signifi-
cantly complements 5mC-based biomarkers in delineating cell identity in both brain 
and non-brain tissues. Each modification state, including 5hmC alone, accurately 
discriminates tissue types, enabling high-precision machine learning classification 
of epigenetic identity. Furthermore, the ternary methylome variations extensively 
implicate gene transcriptional variation, with age-related changes correlated with gene 
expression in a tissue-dependent manner.

Conclusions:  Our work reveals how tissue, sex, and age jointly govern the dynamics 
of the two cytosine modifications, augments the scope of DNA modification biomarker 
discovery, and provides a reference atlas to explore epigenetic dynamics in develop-
ment and disease.

Keywords:  DNA methylation, Hydroxymethylation, Epigenetics, Mouse, Cell identity, 
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Background
Modifications of cytosine bases in mammalian genomic DNA are crucial for regulating 
cellular and organismal functions [1] and are increasingly utilized as diagnostic biomark-
ers [2]. Among these modifications, 5-methylcytosine (5mC) in the CpG dinucleotide 
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context is the most common, with 5-hydroxymethylcytosine (5hmC), an oxidative deriv-
ative, following in prevalence [3]. 5mC marks are introduced and maintained by DNA 
methyltransferases (DNMTs), enabling transmission of the epigenetic profiles across cell 
divisions and over the course of tissue development [4]. TET enzymes can oxidize 5mC 
to 5-hydroxymethylcytosine (5hmC), which must be reestablished after cell division. 
5hmC can be further oxidized to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), 
although the levels of 5fC and 5caC are orders of magnitude below those of 5hmC [5–7]. 
5hmC has been shown to play a critical role in diverse processes, including maintaining 
pluripotency [8, 9], neuronal and somatic tissue development [10–12], aging [13, 14], 
brain disorders [15, 16], and human cancers [2, 17, 18].

While 5mC and 5hmC are increasingly recognized as antagonistic cytosine modifica-
tions with distinct biological roles [19, 20], a comprehensive analysis of their dynam-
ics across various tissue types and age groups is lacking. Prior studies based on bisulfite 
sequencing (BS-seq), enzymatic methyl sequencing (EM-seq), and APOBEC-coupled 
epigenetic sequencing (ACE-seq) have generally assessed their combined signal as 
5-modified cytosine (5modC) or focused on either one of the two modifications in iso-
lation. Notably, the extensive use of bisulfite conversion in DNA methylome profiling, 
which does not discriminate between 5hmC and 5mC [21], has led to the largest body 
of knowledge on 5modC in human and mouse tissues [22–24] and cell types [25–27]. 
Several base resolution methods have also been developed to look at 5mC alone [28–30] 
and 5hmC alone [31–33]. These methods have contributed to understanding the 5hmC 
landscape in neuronal tissues and related disorders [20]—given the high prevalence of 
5hmC in neurons [3, 34, 35]—as well as in embryonic stem cells [36, 37] and various 
human tissues [11, 12]. However, these investigations often studied 5hmC in isolation 
and are typically based on a limited number of subjects. Recently, bulk and single-cell 
co-assays of 5mC and 5hmC have emerged [38–40]. However, due to the high profiling 
cost, the application of these methods has been restricted to specific tissue types, age 
groups, or sexes, limiting the comprehensive exploration of their profiles across biologi-
cally variable samples.

Given the critical biological roles of cytosine modifications, there has been increas-
ing interest in developing a reference atlas across diverse cell types and tissues. Recent 
work with bisulfite-based approaches has demonstrated that 5modC can be used to 
define cell identity with high precision [25–27]. This capability has enabled successful 
applications such as cell type deconvolution from heterogeneous tissues [41], cancer 
classification [42], liquid biopsy, and lineage tracking [43, 44]. Besides approaches that 
combine 5mC and 5hmC into the 5modC signal, 5hmC alone has been proposed and 
applied in translational contexts, including liquid biopsy, due to its potential to delineate 
cell states [45–49]. Given the distinct yet complementary roles of 5mC and 5hmC, these 
established efforts suggest that a ternary-code modification atlas (C, 5mC, 5hmC) would 
likely provide a more precise and nuanced molecular footprint of cell identity than either 
modification alone.

Beyond defining cell identity, resolving 5hmC can help elucidate its role in gene 
regulation. At base resolution, 5hmC levels typically range from 0 to 20% across cells 
[3], with tissue- or age-related differences often below 5%, necessitating high quanti-
tative precision in assays. Previous studies [38, 50] have also shown that 5hmC can be 
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highly focal, potentially impacting transcription factor (TF) binding and cis-regula-
tion of gene expression at enhancers [51]. Thus, high-depth analysis parsing of 5mC 
and 5hmC at information-rich CpG sites offers the potential promise of new insights 
into tissue-specific gene regulation.

Here, to newly dissect ternary-code cytosine modifications across diverse tissues, 
we utilized the Infinium Mouse Methylation BeadChip [23, 52, 53] in tandem with 
Bisulfite-assisted APOBEC-Coupled Epigenetic (bACE) conversion (Fig.  1a). We 
hypothesized that the Infinium BeadChips would be well-suited for scalable ternary 
methylome profiling, as they are highly quantitative (reflecting ~ 100 × sequencing 
depth [54]) and were designed to target enhancers and other 5hmC-enriched genomic 

Fig. 1  Overview of the bACE array strategy and analysis of cytosine modifications across 29 tissues. a Top: 
Schematic representation of the Infinium bACE array strategy. Bottom: A schematic view of the interpolation 
of cytosine modification. b Experimental overview. The bar plot illustrates the number of analyzed 
tissues across various ages (in weeks), with color indicating age ranges: white for younger ages (8 weeks), 
transitioning to black for older ages (76 weeks) across 29 tissue types. The x-axis lists each tissue, while 
the y-axis shows the total number of samples analyzed. The numbers within each tile indicate the sample 
count for each age group. We assigned distinct colors for each tissue type. c Comparison of correlations 
among biological replicates across different sexes, ages, and tissues (liver versus brain tissues: brain cortex, 
cerebellum, subcortical brain). d A ternary plot for cytosine modification distribution across 29 tissue types. 
e Comparison of the mean 5hmCpG and 5mCpGs in each sample. ρ: Spearman’s correlation coefficient. f 
Comparison of global 5hmCpG levels with estimated tissue turnover rates. This analysis utilized turnover data 
for seven human tissues [59] with matched types. Additionally, data from four tissues (CD14 + monocyte, 
keratinocyte, neuron, and osteoblast) that did not precisely match the studied tissue types were included, 
and their turnover times were compared to the global 5hmC fractions in blood, skin, brain cortex, and femur, 
respectively
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regions. Furthermore, the bACE array strategy permits a parallel workflow to resolve 
5hmC from 5modC [55, 56]. In this approach, samples first undergo bisulfite con-
version and are then subsequently split, with one half directly prepared for assay 
to jointly profile 5mC and 5hmC (5modC) and the other half receiving additional 
APOBEC deamination treatment to distinguish 5hmC alone. This discrimination is 
possible because, in bisulfite-converted DNA, 5mC undergoes enzymatic deamina-
tion, while 5hmC, which bisulfite converts to cytosine-5-methylenesulfonate (CMS), 
resists deamination. The resulting profiles of 5modC and 5hmC then allow for the 
fraction of 5mC alone to be derived by subtraction. Unlike previous array adaptations 
that depend on computational correction of background signals [57, 58], the bACE 
array thus provides base-resolution, direct measurements of 5hmC, adding this criti-
cal dimension to help reveal the ternary code.

Using this approach, we generated a comprehensive ternary-code methylation atlas 
from C57BL/6  J mice, spanning 29 tissue types, both sexes, and an age range of 8–76 
weeks, allowing population-scale analysis of these epigenetic marks. This mouse model 
is well-suited for atlas construction, given its well-characterized genetic background, 
rich phenotype characterization, and extensive use in prior epigenetic studies [3, 60]. 
Our atlas offers foundational insights into cytosine modifications in mice and establishes 
principles likely translatable to humans, providing a robust resource for exploring cell 
identity and epigenetic regulation across species.

Results
A ternary‑code DNA methylome atlas of C57BL/6 J mouse tissues

We collected 265 mouse tissue samples, encompassing 29 tissue types from 32 C57BL/6 
J mice (Fig. 1b). DNA was extracted from each tissue sample and underwent bisulfite and 
bACE conversion before Infinium array profiling (Fig. 1a). As 5hmC fractions are fre-
quently low and subject to signal background influence on the Infinium array readout, we 
leveraged a reference DNA set titrating methylation across the full range [23] to derive 
a standard interpolation curve for each probe. Preprocessed array data were then cali-
brated using these standards to obtain direct measurements of %5modC (5mC + 5hmC) 
and %5hmC (Fig.  1a, Methods). To benchmark accuracy at single-CpG resolution, we 
compared our bACE array dataset with published TAB-seq and ACE-seq profiles from 
mouse cortex, a tissue with relatively high 5hmC levels. We observed strong concord-
ance with Spearman correlation coefficients reaching 0.78, higher than the 0.65 cor-
relation observed between the ACE-seq and TAB-seq datasets themselves (Additional 
file 1: Fig. S1a). To further test whether this agreement extends across a broader dynamic 
range of 5hmC abundance, we next compared global %5hmC levels in four tissue types 
using the bACE array and orthogonal measurements from low-pass ACE-seq (Meth-
ods). In these comparisons, interpolated (corrected) array values aligned more closely 
with ACE-seq measurements (Additional file 1: Fig. S1b). Pairwise Wilcoxon tests con-
firmed that uncorrected data differed significantly from ACE-seq (p < 1.5e − 10), whereas 
corrected values were not statistically distinguishable (p = 0.057; Additional file 1: Fig. 
S1c). Although this does not establish strict equivalence, it indicates that interpolation 
markedly improves concordance with the reference sequencing method. Furthermore, 
our datasets across the entire cohort showed stronger correlations among biological 
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replicates than among samples with different covariates (sex, age), confirming the repro-
ducibility of our approach (Fig. 1c).

With our comprehensive profiles across the 265 samples in hand, we first focused on 
the global differences in C, 5mC, and 5hmC across tissues. Given the specific importance 
of modifications in CpG contexts, we plotted the average total %CpG modification levels 
for each sample in a ternary plot, where the three values sum to unity (Fig. 1d). Across 
tissues, the levels of cytosine modifications range from 40.8 to 58.2% for unmodified 
C, 36.3 to 58.2% for 5mC, and 0.5 to 14.6% for 5hmC. Similar tissues were observed to 
cluster together, with 5hmC level adding a dimension that distinguished tissues in these 
ternary plots. Examination of specific tissues revealed that neuron-rich tissues, such as 
the subcortical brain and cortex, showed the highest 5hmC levels, consistent with prior 
measurements using liquid chromatography-mass spectrometry (LC–MS/MS) to quan-
tify DNA modifications [61]. In contrast, immune-related tissues like blood and thymus 
exhibited the lowest levels of 5hmC (Fig.  1d, Additional file  1: Fig. S1d). Notably, our 
focus on CpG modifications was substantiated by examining probes in the non-CpG 
(CpH) context. Overall, the 5hmCpH fraction was generally low in most tissues, with the 
exception of neuronal tissues, where some CpA sites exhibited relatively higher levels of 
5hmC compared to other tissue types (Additional file 1: Fig. S1e).

Given the ability to parse global 5modC into its component 5mC and 5hmC levels, 
we next excluded unmodified C from consideration and examined correlations between 
global 5hmC and 5mC levels. Across tissues, we noted that 5hmC levels are negatively 
correlated with 5mC (Fig.  1e), likely reflecting the fact that 5hmC is generated from 
5mC. At the same time, tissues with similar levels of 5mC can differ significantly in 
their 5hmC content. For example, colonic tissue shows an average of 1.8% 5hmC while 
eye samples show 8% 5hmC, although both tissues have 44% 5mC on average (Addi-
tional file  1: Fig. S1f, red). Conversely, similar global 5modC levels can be associated 
with widely divergent compositions of 5mC and 5hmC. For example, both the subcorti-
cal brain and blood have global 5modC levels around 52–58%, yet 23.5% of the 5modC 
is accounted for by 5hmC in the brain, while only 2% of 5modC is 5hmC in the blood 
(Additional file 1: Fig. S1f, gray). In considering factors contributing to the global 5hmC 
prevalence, we noted that global tissue levels of 5hmC correlated positively with tissue 
turnover time (Spearman’s rho: 0.82, Fig. 1f ), potentially aligning with the non-heritable 
nature of 5hmC over cell division and its accumulation with longer-lived cells. Collec-
tively, global levels of unmodified C, 5mC, and 5hmC varied across tissues, with 5hmC 
levels highest in neuron-rich tissues and lowest in immune tissues, consistent with a 
positive association with tissue turnover time.

Local neighborhoods around 5mC and 5hmC sites

We next moved from examining global 5mC and 5hmC to understanding the local neigh-
borhood context around sites where these modifications are prevalent. In this analysis, 
the two modifications show distinctive profiles. For 5mC, we examined CpGs neighbor-
ing other highly modified CpGs (> 94%). These neighboring CpGs also show correlated 
high methylation levels, with 5mC levels that average > 80% within 200 bp, likely reflect-
ing DNMT processivity [62] (Fig. 2a). By contrast, when focusing on highly 5hmC-modi-
fied sites (> 20%), the scale of spatial 5hmC correlation was shorter, potentially indicating 
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weaker TET processivity [63] (Fig.  2b). Furthermore, while the neighborhood around 
prevalent 5mC tends to show similar profiles across tissues, CpGs neighboring exist-
ing 5hmCs exhibited greater variability across tissues, suggesting that 5hmC marks are 
more localized, particularly in tissues with lower global levels (Fig. 2b). More generally, 
we found that both 5mCs and 5hmCs were inversely correlated with local CpG density 
(Additional file 1: Fig. S2a, b). We also examined the cross-talk between the two modi-
fications in local neighborhoods. CpGs with low 5mC were associated with an absence 
of 5hmC in the neighborhoods extending up to 2–5 kbps away (Fig. 2c), likely reflect-
ing the substrate constraint that 5hmC must be generated from 5mC. Conversely, CpGs 
with high 5hmCs were associated with high 5mCs at immediate neighbors but were 
often proximal to regions with low 5mC (~ 1 kbps), suggesting that TETs act at sites that 
are locally enriched for 5mC but adjacent to regulatory chromatin (Fig. 2d). In contrast, 
high 5modC alone did not predict 5hmC in surrounding regions, indicating TET activity 
is not solely directed by 5mC abundance in a neighborhood (Additional file 1: Fig. S2c).

With a sense of the local neighborhoods for 5mC and 5hmC, we also looked to under-
stand tradeoffs in the distribution of modifications at given individual CpGs. Across the 
data sets, we observe that sites with 5hmC tended to have more 5mC than unmodified 
cytosine (Fig. 2e). Sites with low 5hmC carry different levels of 5mC depending on the 
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Fig. 2  Local neighborhoods around 5mC and 5hmC sites. Distribution of a 5mC levels with high 5modC 
content (over 94%) and b 5hmC levels with high 5hmC content (over 20%). The color of points and lines 
represents tissues. Distribution of c 5hmC level with low 5mC content (less than 6%) and d 5mC level with 
high 5hmC (over 20%). e 5hmCpG fraction correlation with the 5mCpG. Each dot represents a sample. The 
x-axis shows the mean proportion of 5hmCpG, while the y-axis represents the percentage of methylated 
sites, defined by the ratio, of 5mC over the sum of 5mC and C, greater than 0.5. f Spearman correlation 
between 5mC and 5hmC across CpG probes for each sample, with two example scatter density plots 
illustrating the correlation between 5mC and 5hmC showing a representative brain cortex (206402260033_
R05C01) and a blood (206402260033_R05C01) sample. The dashed blue line represents the fitted linear 
regression. Spearman’s correlation coefficient (ρ) and corresponding p value are displayed at the top
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tissue (Fig.  2e). They tend to be unmodified in neuronal tissues and are more associ-
ated with 5mC in immune-related tissues such as blood, thymus, and spleen (Fig. 2e). 
Consistent with these findings, Spearman correlation analysis between 5mC and 5hmC 
profiles within in each sample revealed positive relationships between the two modifica-
tions, most prominent in neuronal tissues exhibiting high global 5hmC levels (Fig. 2f ). 
Additionally, while studies using bisulfite conversion have often suggested that 5modC 
tends to have a bimodal distribution at individual CpGs, we find that the 5mC pattern is 
contingent on 5hmC. When 5hmC is low, the fraction of 5mC within the combined pool 
of 5mC and unmodified C also tends to have a bimodal distribution. This fraction trends 
toward a unimodal distribution as the 5hmC fraction increases (Additional file 1: Fig. 
S2d, e). Together, these patterns suggest that 5hmC dynamically tracks 5mC, particularly 
in neuronal tissues where this coupling is more pronounced. In contrast, in proliferative 
tissues, the distribution of 5hmC appears more independent of 5mC, indicating distinct 
regulatory functions.

In summary, 5mC and 5hmC show distinct spatial correlation patterns: 5mC extends 
more broadly, while 5hmCs are locally confined. 5hmC distribution depends on 5mC as 
the substrate for oxidative generation of 5hmC, a relationship more pronounced in long-
lived tissues.

5mC‑5hmC interplay: chromatin and gene context

Given that tissues exhibit distinct ternary-code profiles, we next focused on understand-
ing how the distribution of 5mC and 5hmC differs as a function of genomic elements 
in the different tissues. To explore global ternary-code profiles by chromatin states, we 
intersected each CpG with consensus chromatin states from an 18-state mouse model 
(Methods), which was derived from 66 ENCODE chromHMM calls [64]. Overall, the 
genomic 5hmC distribution suggests enrichment at actively transcribed gene bodies and 
enhancers (Fig. 3a, Additional file 1: Fig. S3a), consistent with prior reports [65]. While 
this pattern held across tissue types, the relative distributions varied by tissue. Brain cor-
tex, cerebellum, and liver exhibited higher levels of 5hmC in gene bodies than enhanc-
ers, while most other tissue types skewed toward higher levels in enhancers specifically 
(Fig. 3b). As another approach to assess the relative prevalence of 5hmC as a function of 
genomic elements, we examined sites with high 5modC (> 90%) across chromatin states 
and parsed the relative contribution of 5hmC (Fig. 3c). In neuronal tissues, 5hmC con-
tributed up to 14% of cytosine modifications at gene bodies, dropping to ~ 1% in prolifer-
ating tissues like blood, spleen, and thymus. Furthermore, while 5modC is rarely found 
at promoter and enhancer CpG sites, 5hmC can contribute significantly (up to 23% and 
26%, respectively) to the total modification signal (Fig. 3c).

Next, we focused on more precisely defining the distribution of 5hmC and 5modC 
around gene bodies. Both cytosine modifications are more prevalent in gene body DNA 
than in intergenic regions (Additional file  1: Fig. S3b, c). 5modC tends to be slightly 
biased toward the 3′-end of the gene bodies (Additional file 1: Fig. S3b), while 5hmC is 
more frequently found at the 5′-end of gene bodies closer to promoters, suggesting reg-
ulatory roles (Fig. 3d, Additional file 1: S3c). To link expression levels to the distribution 
of modifications, we examined the most and least expressed genes from brain and liver 
tissue. In both tissues, the 5modC patterns tend to be similar for the most expressed 
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genes, with more promoter modifications in the least expressed genes, consistent with 
the canonical epigenetic silencing model of promoter methylation (Fig.  3e). However, 
with 5hmC, genes with higher expression in both tissues are associated with fewer pro-
moter modifications but more gene body modifications than genes with lower expres-
sion (Fig. 3f ). In sum, 5hmC and 5mC show distinct genomic and tissue distributions, 
with 5hmC contributing substantially to total modification in a gene expression-depend-
ent manner.

The global governors of the ternary DNA methylomes

Having examined the global, regional, and genome element-specific cytosine modifica-
tion levels, we next aimed to integrate across the entire ternary-code methylome pro-
file to understand the contribution of tissue, age, and sex in defining methylome profile 
similarity. To this end, we visualized the ternary code as 2D t-SNE embeddings encom-
passing each of the three modification forms separately (Fig. 4a). With each modifica-
tion, tissue type was the predominant influence on sample clustering, followed by age 
and sex, as quantified by entropy-based uncertainty coefficients (Fig. 4b). Hierarchical 
clustering across 29 tissues suggested that each of the cytosine modifications is also 
tracked by developmental lineage, indicating that tissues are separated according to 
their embryonic germ layer origins, cytosine modification levels, and turnover rates. For 
example, using any single modification (unmodified C, 5mC, or 5hmC), neuronal and 

Fig. 3  5mC-5hmC interplay: chromatin and gene context. a Distribution of cytosine modifications across 
29 tissue types categorized by chromatin states, with colors representing chromatin states (top) and tissues 
(bottom). b Distribution of global 5hmCpG levels between gene body and enhancer regions. The x-axis is 
arranged based on the difference in 5hmCpG fractions between these regions. c The numbers in each tile 
represent the fraction of the mean beta value of 5hmCpGs. The mean value was calculated for CpG probes 
with high 5modC levels (greater than 0.9). d The mean beta value distribution of covered CpGs in each bin for 
% of 5hmC/5modC around transcription start sites (TSS) and transcription termination sites (TTS). Distribution 
of mean beta values for covered CpGs in each bin for e 5modC and f 5hmC around the TSS and TTS in brain 
cortex and liver tissues. Transcriptome data were obtained from [66] (Methods)
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immune-related tissues formed distinct clusters consistent with t-SNE patterns (Fig. 4c). 
Focusing on 5modC and 5hmC, we also examined which genomic elements might be 
contributing to clustering. As with 5modC, tissue specificity was most defined by 5hmC 

Fig. 4  The global governors of the ternary DNA methylomes. a t-SNE maps of unmodified cytosine (left), 
5mC (middle), and 5hmC (right) across 29 tissue types, where each point represents a sample. The order from 
top to bottom reflects tissue type, sex, and age. b Uncertainty coefficients for predicting sample clustering 
membership based on tissue type, age, and sex for unmodified cytosine (top), 5mC (middle), and 5hmC 
(bottom). The uncertainty coefficient represents the proportion of total information in clustering explained 
by random discrete variables. c Unsupervised hierarchical clustering of mouse tissues based on levels of 
unmodified cytosine (left), 5mC (middle), and 5hmC (right). d Comparison of age, sex, and tissue-specific 
modifications in 5modC (left), 5mC (middle), and 5hmC (right). e Venn diagrams for the overlap of 
tissue-specific (top), sex-associated (bottom left), and age-associated (bottom right) modifications between 
5modC and 5hmC. Analyses in d and e were performed on 12 tissue types (liver, brain cortex, blood, skin, eye, 
femur, heart, lung, testis, optic nerve, cerebellum, and subcortical brain)
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at gene bodies and enhancers and less so by promoter status (Additional file  1: Fig. 
S4a–c).

As noted, although tissue identity is the dominant factor separating samples, age and 
sex are also contributing factors. With each of the three modifications, within each tis-
sue cluster, samples of different ages separate from one another (Fig.  4a). While sex-
based separation was also evident across samples, greater separation is associated with 
unmodified C and 5mC than with 5hmC (Fig. 4a, Additional file 1: Fig. S4d).

Given that tissue, sex, and age can all contribute to shaping the ternary-code methyl-
ome, we sought to parse CpGs that make a sample distinctive based on each modifica-
tion state. To this end, we performed a CpG locus-based multivariate regression on each 
contributing factor. The number of significant CpGs specific to each predictor is con-
sistent with the order of tissue, age, and then sex (Fig. 4d). Notably, a substantial num-
ber of CpGs are subject to influence by two or even all three factors (Fig. 4d). Focusing 
on CpGs defined by unmodified C (equivalent to those defined by 5modC) and 5hmC, 
13.3% (N = 17,297) of tissue-specific modifications are common to both unmodified C 
and 5hmC, while 5.4% (N = 6983) of tissue-specific modifications are unique to 5hmC 
(Fig. 4e). In contrast, 5hmC features a greater proportion of age-specific modifications, 
with 47.2% (N = 52,745) of the total age-associated CpGs unique to 5hmC, likely reflect-
ing age-dependent accumulation of 5hmC in tissues with longer-lived cells (Fig. 4e).

In summary, tissue type, sex, and age are global determinants of cytosine modification 
states in the ternary-code methylome, with each factor influencing CpG sets that are 
substantially overlapping yet also distinct.

5hmC augments cytosine modification‑based cell identity definition

Bisulfite-based 5modC (and linked unmodified C) signals have been used as molecular 
barcodes for cell identity [27]. To evaluate whether 5hmC alone can also delineate tissue 
identity, we developed predictive models of tissue types based strictly on 5hmC profiles. 
We selected the 2000 most variable 5hmC features to define the model using a training 
subset of the data (N = 73) and achieved 100% accuracy in cross-validation test cohorts 
(N = 32) (Fig.  5a). The most important feature subset, according to SHapley Additive 
exPlanations (SHAP) values, consists of CpGs exhibiting 5hmC marks unique to specific 
tissues or limited tissue subsets (Additional file 1: Fig. S5a). Overall, this analysis dem-
onstrates that 5hmC alone can readily reveal cell identities as effectively as total cytosine 
modifications.

Modifications uniquely reflecting tissue identity were characterized by either hyper- or 
hypo-modifications that distinguish the target tissue from all other tissue types, which 
we collectively refer to as the one-vs-rest or OvR sites. Using a nonparametric linear dis-
criminant analysis, we identified many such sites from our diverse tissue atlas (Fig. 5b, c, 
Additional file 1: Fig. S5b). In contrast to 5modC, where there are more hypomodified 
tissue-defining sites (defined by unmodified C), 5hmC signatures predominantly appear 
as hyper-hydroxymethylation (Fig. 5c). Notably, distinct OvR 5hmC signatures are still 
observed in tissues such as blood and thymus (Fig. 5c), suggesting a role for 5hmC even 
with tissues with globally low 5hmC levels. When parsing 5mC from 5modC, the 5mC-
only signatures were similar to those from 5modC (Additional file  1: Fig. S5b), con-
firming that unmodified C is the primary contributor to the OvR 5modC signatures. 
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Neuronal tissues with high 5hmC were an exception to this overall pattern, with the 
5mC-only signal diminished relative to 5modC, indicating that hyper-5modC signa-
tures in neuronal tissues, in fact, largely originate from the presence of 5hmC (Fig. 5c). 
We also observed that OvR sites segregate by chromatin states in a predictable fashion. 
For example, OvR hyper-5modC signatures were enriched in regions with low base-
line methylation in most tissues, such as gene promoters (Tss) and H3K27me3-marked 
regions (TssBiv and ReprPC) that are marked by red bars in Fig. 5b. Conversely, OvR 
hypo-5modCs were found in highly methylated regions, including gene bodies (Tx and 
TxWk) and quiescent regions (Quies and QuiesG), all denoted by blue bars in Fig. 5b. 
In contrast, OvR hyper-5hmC signatures were often enriched in quiescent regions, sug-
gesting a dependence on the baseline 5mC for 5hmC generation. A direct comparison of 
5hmC and 5modC OvR signatures revealed an extensive overlap of the corresponding 

Fig. 5  5hmC augments cytosine modification-based cell identity definition. a Schematic illustration of the 
random forest model workflow for tissue prediction using the 5hmC dataset from 8 tissue types (Methods). 
The lower section of the figure shows a heatmap comparing predicted versus actual cases from the test 
set. Tissue-specific DNA methylation patterns displaying CpGs (rows) that are hypermethylated (red) or 
hypomethylated (blue) in each tissue (columns organized by tissue type) for b 5modC and c 5hmC. d 
Enrichment analysis of the tissue signatures for 5hmC and 5modC
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hyper-modification signatures across most tissues, suggesting a previously overlooked 
role of 5hmC in hyper-5modC-based cell identity footprints (Fig. 5d).

In sum, we showed that 5hmC alone can reliably predict tissue identity. Even tissues 
with globally low 5hmC, such as blood, harbor distinct 5hmC signatures at CpGs not 
marked by 5mC. This demonstrates that 5hmC contributes independently and augments 
cytosine methylation-based definitions of cell identity.

5hmC delineates cell identity at TF binding vicinities of lineage‑defining genes

We further queried the OvR signature distributions for mechanistic links to tissue biol-
ogy. Specifically, we were interested in reconciling the relationship between 5hmC and 
the TF binding. Based on our earlier analysis, 5hmCs are enriched at enhancers. How-
ever, they are also distinctively localized from hypo-5mC, which is commonly associated 
with direct TF binding [67, 68]. By focusing on hyper-5hmCs and hypo-5modCs, each 
representing the more common tissue-specific changes for 5hmC and 5modC, respec-
tively (Fig. 5b, c) [69], we probed for their association with TF binding and nearby asso-
ciated genes.

Significant overlaps with TF binding sites (TFBS) and gene sets were more frequent 
in 5modC signatures than in 5hmC signatures (Fig.  6a, b, Additional file  1: Fig. S6a–
c). For 5modCs, overlaps with specific TFBSs were more predominant (Fig.  6a, trian-
gles), followed by other target gene set associations, likely reflecting the dependence of 
TF binding directly on the presence or absence of 5mC [68]. For 5hmC, tissue-specific 
hyper-5hmCs were less associated with the direct TF bindings (Fig.  6a). Nonetheless, 
their genomic locations are still proximal to genes marking tissue functions (Fig. 6a, b) 
and are enriched in tissue-specific chromatin states, as evident in the liver, cerebellum, 
and other tissues (Fig. 6c).

Next, we more closely examined the relationship between cytosine modifications and 
TFBSs, focusing on 5hmC distribution. Figure 6d highlights two example TFs: RXRA-B 
in the liver and NEUROD2 in the brain. As expected, 5mC is low at the binding sites 
for both examples. However, for RXRA, we also observe that 5hmC is enriched near 
RXRA-B binding sites, supporting the model that 5hmC can localize adjacent to, but not 
directly at, binding sites, which often prefer unmodified cytosines. Notably, NEUROD2 
in the brain demonstrates how this enrichment is not universal. Here, we observe min-
imal 5hmC enrichment around NEUROD2 binding sites (Fig.  6d, bottom row), which 
likely reflects alternative mechanisms through which 5hmC accumulates in longer-lived 
tissues.

Integrating across modification states, the enrichment patterns can reveal complex 
transcriptional networks composed of genes with tissue-specific functions and expres-
sion profiles (Fig. 6e–h, Additional file 1: Fig. S6d–f). To highlight a few notable findings, 
liver-specific modification changes capture hepatocyte differentiation and function, as 
reflected by the loss of 5modC at binding sites of metabolic regulators such as RXRA 
[70] and the hyper-5hmC marking of key liver metabolism genes such as Akr1c6 in 
prostaglandin metabolism [71, 72] (Fig. 6e). Cerebellum-specific modification changes 
are associated with the binding of neurogenic regulators like NEUROD2, NEUROG2, 
and MECP2 (Additional file 1: Fig. S6d). Eye-specific modification alteration implicates 
vision-related cell maintenance, as exemplified by modification loss at the binding sites 
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of CRX, a key regulator of photoreceptor differentiation [73, 74], and the hyper-5hmC 
marking of Poc1b, associated with retinopathy [75] (Fig. 6f ). Similarly, Dmbt1, a modula-
tor gene of the gastrointestinal functions [76–78], is associated with pancreas-specific 
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Fig. 6  5hmC delineates cell identity at TF binding vicinities of lineage-defining genes. a A scatter plot 
showing enrichment of tissue-specific 5modC (left) and 5hmC (right) by genes, TFBSs, and gene sets. b 
Gene Ontology (GO) term enrichment analysis for tissue-specific hyper-5hmCs for liver (top left), blood 
and spleen (top right), cerebellum (bottom left), and eye (bottom right) tissues. c ChromHMM enrichment 
analysis for hypermethylated tissue-specific 5hmC (top) and hypomethylated tissue-specific 5modC 
(bottom). d Genomic distribution of 5mC level (left) and 5hmC (right) centered on RXRA-B binding sites (top) 
and NEUROD2 binding sites (bottom). Dot plots illustrating the enrichment of hypo (loss) and hyper (gain) 
methylation patterns around TFBSs and genes within 10,000 bp of each target CpG for e liver, f eye, g blood 
and spleen, and h kidney
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hyper-5hmC marking (Additional file 1: Fig. S6e). These observations extend to multiple 
tissues, such as blood, spleen, kidney, and thymus (Fig. 6g, h, Additional file 1: Fig. S6f ).

Some observed regulatory patterns show an association of cytosine modifications 
between the TF gene locus and its corresponding binding site. For instance, immune-
specific modifications are enriched in Pax5, a key regulator of B cell development 
(Fig.  6g). The Pax5 gene exhibits hyper-5modC, while binding sites for this TF show 
hypo-5modC, reflecting a regulatory circuit where TF expression and its genomic bind-
ing activity are coordinately controlled [79–81].

A close examination suggests that while some observed regulatory patterns are 
influenced by a single cytosine modification form (Additional file  1: Fig. S6e, f ), oth-
ers are coordinated through mechanisms involving both 5mC and 5hmC dynamics. 
For example, MECP2, a key methylation reader, shows cerebellum-specific patterns of 
both 5modC and 5hmC (Additional file  1: Fig. S6d). When the MECP2 binding sites 
are marked by 5hmCs, the nearby gene expression tends to be activated compared to 
when the binding sites are marked by 5mCs (Additional file 1: Fig. S6g), consistent with 
a previous study [82]. In sum, our analysis of tissue-specific OvR signatures shows that 
5modC is directly associated with transcription factor binding, whereas 5hmC tends to 
localize near binding sites and genes with tissue-specific functions. Together, these pat-
terns reveal complex regulatory networks where tissue-specific functions are captured 
by combinations of 5mC and 5hmC dynamics, sometimes acting independently and 
sometimes coordinately.

Cytosine modification alterations are linked to gene expression changes

To explore the transcriptional ramifications of 5mC and 5hmC variations, we next ana-
lyzed the correlation between published transcriptome profiles of 16 tissue types and 
the gene-specific 5mC and 5hmC levels quantified in those matched tissues [66]. In 
most tissues, a global negative correlation was observed between 5mC and gene expres-
sion (Fig. 7a). The main exception to this was in Polycomb-repressed regions and het-
erochromatin, where 5mC showed a positive correlation with the expression of nearby 
genes (within ~ 10 kb). The positive association between 5mC and gene expression at 
H3K27me3-marked regions has been reported previously, likely representing a switch 
between two repressive epigenetic marks [83, 84]. In contrast, 5hmC levels showed 
opposite, positive correlations with expression, particularly at gene bodies and enhanc-
ers (Fig. 7b). Unexpectedly, in tissues with higher global 5hmC, such as the brain tissues, 
5hmC is less correlated with gene expression (Fig. 7b, Additional file 1: Fig. S7a). This 
result suggests that in non-proliferating tissues, much of the 5hmC does not play a regu-
latory role in gene expression (Fig. 7b), instead reflecting a steady accumulation of 5hmC 
at non-specific 5mC sites not counteracted by cellular replication in post-mitotic cells. 
Despite being rare in heterochromatin, 5hmC remains positively correlated with RNA 
expression (Fig. 7b, Additional file 1: Fig. S7b), whereas 5mC showed a negative correla-
tion (Fig. 7a, Additional file 1: Fig. S7c). This suggests that the presence of 5hmC can be 
even more predictive of gene expression in broad heterochromatic neighborhoods.

We also focused on whether base-resolution distributions of 5hmC and 5mC are 
linked with tissue-specific expression. As it is well established that 5modC levels are 
inversely correlated with transcription, and 5hmC levels are generally less prevalent, 
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we primarily analyzed the 5modC loss (gain of unmodified C) and the 5hmC gain 
at specific CpGs across genes of interest. Multiple tissue-specific 5modC/5hmC 
showed correlation with tissue-specific gene expression. Example genes, e.g., Akr1c6 
and Cyp1a2 in the liver (Fig. 7c and d), showed coordinated variations in their epig-
enomic and transcriptomic profiles, with regional change in 5modC and 5hmC being 
liver-specific. Similar patterns can be observed in other representative genes, such as 
Cd8b1 in the thymus (Additional file  1: Fig. S7d), Cdh16 in the kidney (Additional 
file 1: Fig. S7e), and Rbfox1 and Prkce in the brain (Additional file 1: Fig. S7f, g).

Integrating across these examples, when associated with gene expression, tissue-
specific 5hmCs tend to be more pervasively distributed around the gene bodies 
(Fig. 7c, d, Additional file 1: Fig. S7d–g). In contrast, tissue-specific 5modC absence 
remains more focal and localized. Exceptions to this rule are CpGs in quiescent 
genomic territories, which are heavily modified but depleted in 5hmC (Fig. 7c, C.1). 

Fig. 7  Cytosine modification alterations are linked to gene expression changes. Dot plot showing the 
correlation between RNA expression (from 6-week samples) and a 5mC and b 5hmC levels (from 8-week 
samples) across genes. The size of each dot reflects the absolute value of Spearman’s rho, while the color 
represents Spearman’s rho score. A track view for c Akr1c6 and d Cyp1a2. The heatmap was organized from 
top to bottom, displaying 5modC, 5hmC, full-stack chromHMM chromatin state, and RNA expression levels
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The total modification and 5hmC differences take place at different CpGs, constitut-
ing complementary molecular definitions of the epigenetic identity (Fig. 7c, d).

It is worth noting that marker genes do not always carry tissue-specific changes in both 
5modC or 5hmC (Additional file 1: Fig. S7h). For example, Adcy7 and Acox3, marking 
spleen and kidney, respectively, carry tissue-specific 5modC, but the presence of 5hmC 
is not obvious from our profiles (Additional file 1: Fig. S7i, j). Adamts20 marking brain 
lacks tissue-specific 5modC but exhibits clear tissue-specific 5hmC (Additional file  1: 
Fig. S7k). Additionally, tissue-specific 5hmC is not always indicative of gene expression. 
This is best epitomized by the brain and aged liver tissues, which often exhibit 5hmC at 
non-expressing genes, again likely to reflect the global accumulation of 5hmC in long-
lived cells (Fig. 7d, Additional file 1: Fig. S7e, i, j).

Here, we found that, in general, 5mC negatively and 5hmC positively correlate with 
gene expression. However, 5hmC accumulation can occur at non-expressing genes and 
is uncoupled from transcription in long-lived tissues. We confirmed that 5modC and 
5hmC provide complementary tissue characterizations.

Ternary‑code epigenetic aging implicates tissue functional maturation and immune 

dynamics

Age is known to shape the epigenome, as demonstrated by epigenetic aging clocks 
that can track both chronological and biological age [85, 86]. In our mouse cohort, 
tissues were collected from a wide age range of mice, including at least one 76-week-
old mouse per sex. This diverse age range enabled us to investigate the effects of 
aging on DNA modification patterns, with our approach allowing us to distinguish 
the roles of 5mC from 5hmC (Fig.  8a). The established paradigm of DNA methyla-
tion dynamics associated with mitotic aging is epitomized by the gain of modifica-
tions at Polycomb repressive complex targets and their loss at late-replicating genome 
[87, 88]. We first validated this established paradigm as an orthogonal check on our 

(See figure on next page.)
Fig. 8  Ternary-code epigenetic aging via tissue functional maturation and immune dynamics. a A ternary 
plot for global C, 5mC, and 5hmC levels of samples with circle sizes indicating mouse ages. b ChromHMM 
enrichment analysis of gain of 5modC levels (left) and gain of 5hmC levels (right). Log2 odds ratios less 
than − 2 are capped. c Aging-related enrichment analysis for the gain of 5hmC in the liver during aging. 
(bottom) The x-axis represents age-related gain 5modC probes, and the probes are organized based on the 
age-related slope coefficient values. To examine the age-related contribution of 5hmC, only CpGs with low 
5modC (~ 10%) in the youngest (8-week-old) mice were selected. The y-axis shows each probe’s age-related 
slope coefficients from linear regression (unit: week). (top) The x-axis aligns with the bottom plot, and the 
y-axis exhibits the enrichment score (ES). Each bar in the figure depicts the location of age-associated 5hmC 
gains. d Scatter plots illustrating the correlation between levels of 5hmC (left) and 5modC (right) in the brain 
cortex (top) and liver (bottom) at two different developmental stages: 8 weeks (a representative sample) and 
76 weeks (a representative sample). The color gradient indicates the density of data points. The red diagonal 
line represents a 1:1 correlation, and the percentages in the upper left and lower right corners indicate 
the proportion of data points falling above and below this line, respectively. e Scatter plots illustrating the 
correlation between changes in RNA expression and 5hmC levels and GO term enrichment analysis for four 
tissue types (liver, heart, brain cortex, and skin). The red dashed lines represent the axes with no change 
in RNA expression and 5hmC. The numbers in each quadrant’s corners denote the percentage of data 
points within that quadrant. The y-axis in scatter plots represents age-associated RNA expression (log10 of 
(normalized counts + 1)), while the x-axis shows estimates from a linear regression model examining changes 
in 5hmC levels with aging. Bar charts illustrate the enrichment of GO terms associated with metabolic 
processes in the four tissue types
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data. Indeed, we observe gains of 5modC at Polycomb targets (Fig. 8b) and global loss 
of 5modC in aged tissues with high turnover rates, e.g., the skin (horizontal axis in 
Fig. 8a, Additional file 1: Fig. S8a) [89]. Notably, the global 5modC trend is reversed 
in tissues with slow proliferation, such as the brain cortex, cerebellum, and eye, where 
5modC increases with age (Fig. 8a).

To explain the tissue discrepancies, we dissected the two modification forms in 
5modC and queried whether age-associated changes in 5modC can be driven by 
5hmC. First, we observed that in tissues with slow proliferation, global 5hmC levels 
indeed increase with age (Fig.  8a, the 5hmC dimension), with this 5hmC enriched 
in gene bodies (Fig.  8b, right). To rigorously test whether increased age-associated 
5hmC drives age-associated gain of 5modC, we performed an enrichment analysis 

Fig. 8  (See legend on previous page.)
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of CpGs with both modification changes in liver samples, which provided the most 
extensive sampling across the different ages. Our results confirmed that the age-
related increases in 5modC significantly overlap with sites showing an increase in 
5hmC during aging (Fig. 8c). However, Polycomb targets (ReprPC) showed low 5hmC 
enrichment, suggesting a limited contribution of 5hmC gain to 5modC gain in these 
regions (Fig. 8b, Additional file 1: Fig. S8b, c). Interestingly, sites of higher 5hmC lev-
els in young tissue are linked to even greater increases in 5hmC in older tissues, a 
pattern more pronounced when examining 5hmC alone than the combined 5modC 
signal (Fig. 8d).

To query links to tissue function, we compared age-associated changes in cytosine 
modifications with age-associated gene expression changes across various tissue types, 
focusing on the less well-characterized 5hmC. Using public transcriptome data from 
mouse brain, liver, heart, dorsal skin, and lung tissues [90], we compared the rate of 
5hmC changes per CpG, as measured by the linear regression slope coefficients, with 
the expression changes in the linked genes during aging. In all tissues aside from the 
lung, we observed that 5hmC correlates positively with gene expression, with concord-
ant increases or decreases with age (Fig. 8e, Additional file 1: Fig. S8d). The changes fre-
quently reflect tissue development and functions. For example, age-associated 5hmC 
gains decreased gene expression involved in hepatocyte differentiation in the liver and 
neuronal function in the brain, while supporting epidermis development in the skin 
(Fig. 8e). In the heart, 5hmC gains influence genes involved in blood circulation in both 
directions. The few reduced 5hmCs in liver aging can also be associated with liver func-
tion change, as seen with the Tdo2 gene, where both RNA expression and 5hmC levels 
decline with age (Additional file 1: Fig. S8e). In bulk tissues, 5hmC dynamics may also 
reflect shifts in tissue composition. For example, gene sets that show gained 5hmCs and 
lost gene expression (Fig. 8e, the fourth quadrant of the skin panel) are linked to muscle 
development, likely due to increased subcutaneous stromal contamination in samples 
[91, 92]. Similarly, liver aging is associated with increased 5hmC levels and RNA expres-
sion in immune-related genes (Fig.  8e, the first quadrant of the liver panel). In fact, 
immune system hallmarks are also observed across brain tissue and lungs, potentially 
mediated by chronic tissue inflammation, a universal aging hallmark (Fig. 8e, Additional 
file 1: Fig. S8d).

In sum, our analysis revealed age-dependent 5hmC dynamics across multiple tissues, 
suggesting its contribution to the established aging paradigm of total cytosine modifica-
tions. These changes correlate with transcriptional programs linked to tissue develop-
ment, function, and inflammation, underscoring the complex epigenetic regulation of 
aging trajectories.

Discussion
In this study, we profiled the genomic landscape of C, 5mC, and 5hmC to generate a 
comprehensive atlas of the ternary code spanning different tissues across ages and in 
both sexes. Our study builds on the distinctive strengths of the Infinium arrays and a 
combined chemical and enzymatic sequencing approach. Our atlas suggests that in 
proliferative tissues where global 5hmC is low, enhancer 5hmCs can still be high and 
biologically meaningful. It highlights the value of dissecting 5modC signals into their 
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component 5mC and 5hmC parts in all tissues, informing on the regulatory roles of each 
modification in gene expression and their utility as molecular barcodes of both cell iden-
tity and tissue aging.

Strength of Infinium BeadChips in profiling ternary methylomes

In contrast to most previous profiling efforts to parse 5hmC based on high-throughput 
sequencing methods—such as TAB-seq [32] and ACE-seq [31] for measuring 5hmC 
alone, or OxBS-seq [28] and DM-seq [30] for measuring 5mC alone—this study employs 
Infinium arrays. Early studies on glioblastoma, cord blood, and fetal brain development 
have demonstrated the compatibility of Infinium arrays with oxidative bisulfite (OxBS) 
conversion methods [20, 93, 94]. This study utilized a combined chemical and enzymatic 
conversion strategy with the array, offering several advantages for ternary-code methyl-
ome profiling. First, the array offers high effective depth. Unlike 5modC, 5hmC does not 
exhibit the bimodal distribution characteristic in homogeneous cell populations. Given 
that 5hmC is more of a continuous variable, the Infinium arrays provide better quantita-
tive resolution, effectively achieving an equivalent sequencing depth of approximately 
100 ×, which then permits the resolution of modification components at base resolution 
[54]. Second, the sites selected on the Infinium arrays offer an advantage. The array is 
enriched in enhancer and gene body CpGs, which are particularly suitable for interro-
gating 5hmC dynamics as these regions are among the most biologically variable [37, 
95]. Lastly, the array offers a distinctive advantage in terms of throughput. Prior stud-
ies highlight that the ternary code can vary in response to numerous biological factors 
such as cell type and age [11–13, 96]. Dissecting the contributions of multiple factors 
and their interactions requires large sample sizes, especially given the subtle changes 
observed (Fig. 8d). Our approach using the Infinium BeadChip offers a scalable solution 
for population-scale ternary-code methylome profiling, enabling a comprehensive data-
set to investigate how factors, such as tissue and age, influence the ternary methylome 
and its regulatory implications.

Tight biochemical coupling of 5hmC and 5mC in complex grammars

Resolving 5modC signals into their component signals helps to reveal more about the 
biogenesis of 5hmC. As an oxidation product of 5mC, 5hmC can revert to unmodified 
cytosine or further oxidize, depending on the cellular context. Our analysis reveals that 
5hmC consistently arises at sites where 5mC is also present. Genomic regions devoid of 
5mC are also devoid of 5hmC, with promoters and bivalent regions exemplifying this 
substrate dependence. While further oxidation of 5hmC can lead back to unmodified 
C, the substrate effect of 5hmC on the production of 5mC is not evident, reflecting the 
higher chemical stability of 5mC than 5hmC. Notably, although our approach does not 
focus on 5fC/5caC, the levels of these modifications are known to be orders of magni-
tude below those of 5hmC and thus negligible on the scale of our array-based analysis 
[5–7].

Furthermore, while the processivity of DNA methyltransferases (DNMTs) is well-stud-
ied in generating contiguous 5mC patterns, the mechanisms governing 5hmC distribu-
tion remain less clear. We observed spatial correlations of 5hmCs that occur on smaller 
genomic scales relative to 5mCs (Fig. 2b). Although smaller in scale, the observation of 
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a degree of clustering of 5hmCs raises questions about whether this reflects intrinsic 
enzyme processivity or localized TET activity due to its recruitment to specific loci. The 
observed patterns emphasize the necessity of studying 5mC and 5hmC together to fully 
understand their interplay and the importance of analyzing the ternary-code methyl-
ome to uncover nuanced regulatory mechanisms governing how these modifications are 
introduced.

Ternary‑code methylome augments epigenetic cell identity definition

Our tissue analysis revealed that 5hmC and 5mC collectively contribute to defining cell 
identity across diverse tissue types. Hierarchical clustering and t-SNE analyses identified 
the separation of 5mC and 5hmC profiles by tissue type, even in tissues with globally low 
5hmC levels, such as blood and thymus. In neuronal tissues, subtype-specific patterns 
were especially prominent, showcasing the ability of 5hmC to delineate cellular iden-
tity independently of 5mC levels. Globally, 5hmC levels correlate with tissue turnover 
rates, reflecting its status as a non-inheritable marker that needs to be reestablished by 
TET enzymes in newly replicated DNA after installation of 5mC. In proliferative tissues, 
5hmC can be diluted due to a lag in establishing 5hmC relative to the maintenance of 
5mC marks. Conversely, higher 5hmC levels are observed in tissues with higher levels 
of post-mitotic cells or in quiescent tissues such as the aged liver [13]. Locally, 5mC and 
5hmC establish a synergistic regulatory framework. Tissue-specific one-vs-rest (OvR) 
methylation enrichment analysis revealed that 5hmC is enriched in gene bodies, while 
low 5mC is found at TFBSs, with 5hmC often flanking these regions. These complemen-
tary distributions illustrate how 5mC and 5hmC collaboratively regulate gene networks 
and augment cell identity definition.

Transcriptional implications of 5hmC dynamics

Overall, 5hmC is positively associated with nearby gene expression, in contrast to 5mC, 
which is often negatively associated with transcriptional activity at enhancers and pro-
moters (Fig. 7a, b). However, the relationship between cytosine modifications and gene 
expression is more nuanced as 5hmC biogenesis is governed by multiple factors, includ-
ing cell division rates, chromatin states, and age. For instance, in long-lived cells and 
tissues, such as the brain, 5hmC is often broadly present, appearing to be less correlated 
with gene expression than more proliferative tissues (Fig. 7b). This reveals that transcrip-
tion-related 5hmC presence was being weighed against other factors influencing 5hmC 
biogenesis. Similarly, at genomic territories typically depleted of 5hmCs, such as hetero-
chromatin and some quiescent regions (Additional file 1: Fig. S3a, likely due to the high 
methylation levels that recruit MBDs and restrict TET1 binding [65]), the little 5hmC 
can exhibit robust correlations with the expression of the few genes these regions harbor 
(Fig. 7b), again reflecting this signal-over-noise balance.

Ternary‑code methylome‑based delineation of epigenetic aging

Compared to 5modC, 5hmC shows greater sensitivity to aging (Fig. 4d), with gains con-
tributing to overall modification increases more at gene bodies than at Polycomb tar-
gets (Fig.  8). Similar to 5modC, age-related changes in 5hmC are also tissue-specific 
and associated with transcriptional consequences (Fig. 8). These findings emphasize the 
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importance of resolving 5hmC dynamics in the study of epigenetic aging. For example, 
5hmC levels accumulate in the aged liver while they decrease in the aged lung. These 
variations are likely driven by shifts in cell type proportions, tissue differentiation, and 
developmental processes, which collectively reflect tissue functional maturation or 
decline [97]. Also, 5hmC alterations are implicated in age-dependent chronic inflamma-
tion in our analysis (Fig. 8e). A causal link may exist. For instance, prior research found 
that intermittent hypoxia exposure increased TET activity and total 5hmC levels at Wnt 
pathway genes in the hippocampus of mice, and Tet1 knockdown reduced hypoxia-
induced neuroinflammation [98]. These findings highlight the unique potential of pars-
ing 5hmC and 5mC in delineating biological aging, augmenting epigenetic clocks, and 
advancing our understanding of the physiological and cellular impacts of aging.

Limitations of the study

This study’s small sample size may reduce statistical power for certain analyses. Addi-
tionally, while robust, the Infinium BeadChip’s coverage is limited to approximately 1% 
of genome-wide CpG sites [23], potentially missing important regions. Furthermore, this 
study profiled bulk tissues, which may obscure cell-type-specific variations in 5hmC and 
5mC levels. Recent single-cell and spatial studies [38–40, 99, 100] have begun to uncover 
these finer-scale differences, but they are limited to small scales, often focusing on brain 
tissues and neuronal cell types in a few individuals. Expanding single-cell approaches 
to larger populations and diverse tissue types will be critical to complement bulk-tissue 
analyses and fully understand the complexity of the ternary-code DNA methylome.

Conclusions
In summary, our study advances the understanding of the ternary-code DNA methylome 
by providing a high-resolution, base-level atlas of 5mC and 5hmC across diverse mouse 
tissues, ages, and sexes. The findings highlight the distinct and complementary roles of 
5mC and 5hmC in epigenetic cell identity, aging, and gene expression. These insights lay 
a foundation for future research into epigenetic mechanisms underlying development, 
aging, and disease, with broad implications for cancer and regenerative biology.

Methods
Sample preparation and DNA extraction

A total of 265 samples representing 29 tissue types were obtained from 32 C57BL/6 J 
mice, which included 22 mice from the Jackson lab and 6 mice from the Jin lab. Genomic 
DNA was extracted from these mouse tissues using a phenol/chloroform/isoamyl alco-
hol protocol with minor modifications [101]. Tissues were incubated with lysis buffer 
(10 mM Tris pH 8.0, 300 mM NaCl, 5 mM EDTA pH 8.0, 0.5% SDS, and autoclaved 
ultrapure water). The specific lysis conditions for each tissue are described in Addi-
tional file  2: Table  S1. In a fume hood, an equal volume of phenol/chloroform/isoa-
myl alcohol (Sigma-Aldrich, 77,617) was added to the Phase Lock Gel tube containing 
the lysed mixture. The aqueous phase was then transferred to a new 1.5-ml centrifuge 
tube (Eppendorf, 05414203). Five hundred microliters of 100% isopropanol (Millipore-
Sigma, EM1.09634.1011), 1.7 µl of GlycoBlue (Invitrogen™, AM9515), and 33 µl of 7.5 
M ammonium acetate solution (Sigma-Aldrich, A2706) were added. The mixture was 
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vortexed briefly and incubated at − 20 °C for 30 min to overnight. The samples were sub-
sequently centrifuged at 16,000 g for 30 min at 4 °C. Following centrifugation, the sam-
ples were washed twice with 1 ml of 70% ethanol (MilliporeSigma, EM1.00983.1011). 
After the final wash and removal of 70% ethanol, the samples were air-dried for 10 min 
and then resuspended in 46 to 200 µl of Tris buffer pH 8.0 (VWR, 97,062–674) at 55 °C 
for 10 min. If the DNA was not fully dissolved, it was further incubated at 4 °C for 1 to 2 
days. DNA concentration was measured using a Qubit 4.0 Fluorometer (Invitrogen) with 
the dsDNA HS Assay Kit (Invitrogen, Q33231). For DNA samples that were either not 
transparent or showed inadequate quantities, an additional bead purification step was 
performed using AMPURE XP (Beckman Coulter, A63881). Two times the volume of 
bead reagents was added to the sample, mixed thoroughly, briefly centrifuged, and incu-
bated at room temperature for 5 min. The mixture was then placed on a magnetic stand 
and washed twice with 500 µl of freshly prepared 80% ethanol, followed by 3 to 5 min 
drying. Final elution was carried out with 46 µl to 200 µl of TE buffer. One microliter of 
the eluate was used to measure DNA concentration using the Qubit 4.0 Fluorometer.

Bisulfite conversion of genomic DNA

DNA bisulfite conversion was performed using the EZ DNA Methylation kit (Zymo 
Research, D5001) or EZ-96 DNA Methylation MagPrep (Zymo, D5040). Samples were 
bisulfite converted using the EZ DNA Methylation kit, and the conversion was per-
formed according to the manufacturer’s instructions, with the specified modifications 
for the Illumina Infinium Methylation Assay. The final elution volume was 25 µl of the 
customized buffer (0.07 × of the supplied elution buffer). Ten microliters of eluate was 
used for the BS array, and the remaining 15 µl was used for A3A conversion. Samples 
bisulfite converted by the EZ-96 DNA Methylation MagPrep kit (Zymo, D5040) followed 
the same process as the above, but with a final elution of 20 µl using the elution buffer. 
Ten microliters of the eluted solution was used for the BS array. Ten microliters of elu-
tion buffer was added to each well to the remaining 10 µl of eluate, and 15 µl of this was 
then used for A3A conversion.

CpG-methylated lambda DNA preparation: 1 µl of CpG methylase (Zymo, E2010) was 
combined with 1 µg of unmethylated lambda DNA (Promega, D1521), along with 2 µl 
of 10X CpG buffer, 1 µl of 20X SAM, and autoclaved ultrapure water added to achieve a 
total volume of 20 µl. The mixture was incubated at 30 °C overnight, but 1 µl of the CpG 
methylase was added after 2 and 4 h of incubation. The clean-up was performed using 
Genomic DNA Clean & Concentrator-10 (Zymo, D4010), followed by the manufactur-
er’s protocol with elution by autoclaved ultrapure water.

Evaluation CpG methylation of the CpG-methylated lambda DNA: A mixture was 
prepared by combining 20 ng of methylated lambda DNA with 0.2 µl of HpaII (NEB, 
R0171S), 10X buffer, and autoclaved ultrapure water, resulting in a total volume of 10 µl. 
The mixture was incubated at 37 °C for 50 min, followed by inactivation at 80 °C for 20 
min. Subsequently, 10 µl of the samples and 2 µl of 6X loading dye were loaded onto a gel 
electrophoresis using a 2% gel (VWR, 0710-500G) at 120 mA for 45 min. We used sam-
ples without evidence of fragmented DNA for further use.

The CpG-methylated lambda, amounting to 100 ng, underwent bisulfite conversion 
using the procedure outlined in this Methods section, and the elution was carried out 
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with 100 µl using the customized elution buffer. Subsequently, a mixture was prepared 
by combining 90 µl of the customized elution buffer with 10 µl of the eluted bisulfite-
converted DNA (BCD), and this mixture was designated as ML1.

A3A deamination of BCD for bACE array

A3A enzyme purification was conducted according to the method described in [102]. 
The bACE conversion was carried out with minor modifications based on the method 
described in [103]. Fifteen microliters of BCD, 1 µl of ML1, 5 µl of DMSO (Sigma-
Aldrich, D2650-100ml), 5 µl of A3A reaction buffer (35 mM 2:7:7 succinic acid: sodium 
dihydrogen phosphate: glycine), and autoclaved ultrapure water were combined, result-
ing in a final volume of 48.5 µl for the 60 µM A3A or 49 µl for the 83.7 µM A3A. The 
mixture was then denatured at 95 °C for 5 min and rapidly cooled by transferring to a 
cool rack pre-chilled on dry ice. The deamination reaction was incubated at 30 °C for 2 h 
with either 1 µl of A3A at 83.7 µM or 1.5 µl of A3A at 60 µM. After incubation, purifica-
tion was carried out using OLIGO CLEAN AND CONC-5 (Zymo, D4060) according to 
the manufacturer’s instructions, with the final elution performed using 12 µl of the cus-
tomized elution buffer.

Quantitative real‑time PCR (qPCR) for checking of A3A deamination

qPCR standards were prepared by serially diluting ML1 to concentrations of 1 ×, 0.1 ×, 
0.01 ×, and 0.001 × using the customized elution buffer. For the qPCR reactions, 1 µl 
of each A3A-converted sample or qPCR standard was combined with 5 µl of Platinum 
II PCR Master Mix (2X) (Thermo Fisher, 14,000,012), 0.5 µl of 10% ROX (Invitrogen, 
12–223-012), 0.5 µl of EvaGreen (EMSCO, NC0521178), 0.2 µl of 10 µM M1_F primer 
(AGG​AGG​TAA​TTA​GTC​GGA​TTGGC, IDT, see Additional file  2: Table  S2), 0.2 µl of 
10 µM M1_R primer (GAA​CCT​ATC​TAC​CCG​TTC​GTA​CCG​T, IDT), and autoclaved 
ultrapure water to reach a total volume of 10 µl. The mixtures were prepared on ice in 
a 384-well PCR plate (Applied Biosystems, A36931). After vortexing and brief centrifu-
gation, the plate was placed into a QuantStudio 5 (Thermo Fisher). The amplification 
protocol consisted of an initial step at 94 °C for 2 min, followed by 40 cycles of 15 s at 
94 °C and 45 s at 60 °C. Only A3A-converted samples with Ct values higher than the 
0.001 × ML1 standard were used.

BS array and bACE array by Illumina MM285 array and data pre processing

We used the maximum array input of 10 µl, as specified in [52]. BS array and bACE 
array were processed using the Infinium Mouse Methylation BeadChip kit (referred to 
as the MM285 array) according to the manufacturer’s protocol. The MM285 array inter-
rogates ~ 285,000 CpG sites, covering ~ 1.3% of the set of CpGs in the mouse genome. 
Despite its limited coverage, the array captures diverse methylation features genome-
wide, prioritizing 5hmC-enriched genomic regions, such as enhancers [23]. The array 
IDAT files were subjected to preprocessing, quality control, and analysis using the SeS-
AMe R package [104]. Beta values were extracted from raw IDAT following the openS-
esame function with default parameters. GRCm38/mm10 manifest files (probe mapping 
information, gene annotation, CGI, chromatin state, enhancer, TFBSs) were obtained 
from https://​zwdzwd.​github.​io/​Infin​iumAn​notat​ion#​mouse.

https://zwdzwd.github.io/InfiniumAnnotation#mouse
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ACE‑seq of cerebellum, heart, kidney, and blood tissue DNA

Ten nanograms of purified mouse tissue gDNA was mixed with 1% of unmethylated λ 
gDNA spike-in and 1% 5mCpG methylated plasmid spike-in, in a total volume of 50 µl in 
low TE buffer. This input DNA was then sheared to 350 bp (Covaris ultrasonicator), end-
repaired, and ligated to modified Y-shaped adaptors (forward: ACA​CTC​TTT​CCC​TAC​
ACG​ACG​CTC​TTC​CGA​TC*T, *indicates phosphorothioate, reverse: GAT​CGG​AAG​
AGC​ACA​CGT​CTG​AAC​TCC​AGT​CA, all Cs are 5pyC, IDT) using an NEBNext UltraII 
DNA library prep kit (NEB, E7645) according to the manufacturer’s instructions. The 
sample was purified using a 1.2 × left-sided SPRI (Beckman Coulter, B23317) according 
to the manufacturer’s instructions and eluted in 17.6 µl of nuclease-free H2O (nfH2O). 
16.6 µl of the resulting eluent was then treated with 1 µl bGT (NEB, M0357) in a reac-
tion containing 0.4 µl UDP-glucose (NEB, S2200) and 2 µl of CutSmart Buffer (NEB), 
which was incubated at 37 °C for 1.5 h. Following conversion, the samples were purified 
by 1.2 × left-sided SPRI and eluted in 17 µl of nfH2O. Sixteen microliters of eluent was 
then snap-cooled by adding 4 µl of formamide (Thermo Fisher, 17,899), heating to 85 °C 
for 10 min, and then immediately placing the sample on ice. The snap-cooled mixture 
was then combined with 68 µl of nfH2O, 10 µl of APOBEC 10 × buffer (NEB, E7134), 1 µl 
of BSA (NEB, E7135), and 1 µl of APOBEC (NEB, E7133) and incubated at 37 °C for 3 h. 
The deaminated mixture was then purified by 1.2 left-sided SPRI and eluted in 23.5 µl of 
nfH2O. 22.5 µl of eluent was then combined with 25 µl of 2X KAPA HiFi U+ Polymerase 
(Roche, 50–196–5287) and 2.5 µl of NEBNext Multiplex Oligos for Enzymatic Methyl-
seq (NEB, E1720) and amplified using 8 PCR cycles. The amplified libraries were then 
purified using a 0.8 × left-sided SPRI purification, with elution in 11 µl nfH2O to yield 
final libraries. Final libraries were quantified with a Qubit HS kit (Invitrogen, Q32851), 
assessed for quality using a High Sensitivity D1000 ScreenTape (Agilent, NC1786959), 
and sequenced on an Illumina MiSeq.

Methylome of Illumina MM285 array interpolation and evaluation

As highlighted in two previous studies [23, 95], systematic deviations observed in Infin-
ium arrays may arise due to signal background effects, which could introduce slight 
measurement biases. In this study, CpG levels were interpolated using DNA methyla-
tion standards from EpigenDX Mouse DNA (with methylation levels of 0%, 5%, 10%, 
25%, 50%, 75%, and 100% CpG-methylated genomic DNA; GSM5587118–GSM5587126, 
GSM5587128 in GEO under accession GSE184410) through the approx function with 
the linear option from the stats R package (version 4.3.3). The interpolated values were 
validated by comparing them with results from the same DNA samples (cerebellum, kid-
ney, heart, and blood) in the ACE-seq dataset (GSE308297, Additional file 1: Fig. S1b). 
These interpolated beta values were then used for the downstream analysis. The MM285 
probe annotation for chromHMM state is downloaded from the KnowYourCG database 
https://​github.​com/​zhou-​lab/​KYCG_​knowl​edgeb​ase_​MM285/​tree/​main/​mm10.

Tissue prediction

To develop a tissue prediction model using a random forest classifier, we assessed its 
performance with 8 tissue types—liver, brain cortex, blood, skin, eye, femur, heart, and 

https://github.com/zhou-lab/KYCG_knowledgebase_MM285/tree/main/mm10
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lung—each having more than 5 samples for both sexes, resulting in a total of 105 sam-
ples. Seventy percent (n = 73) were used as the training set, and the remaining 30% were 
used as the test set. We selected 2000 5hmCpGs from the training set, which was identi-
fied as the most variable in 5hmC levels across the samples. We applied tenfold cross-
validation with a 70:30 split of training to test data using the caret R package (version 
6.0.94). The model was configured with 150 trees (ntree = 150). The model’s accuracy 
was evaluated by calculating the proportion of correctly classified samples in the test set. 
SHAP values of the selected 2000 5hmCpGs were assessed using the iml R package (ver-
sion 0.11.4).

Tissue‑specific hyper‑ and hypomethylation signatures

We used a one-vs-rest approach to identify CpGs uniquely hypo- or hypermethylated in 
each tissue. We first computed the area under the curve (AUC) to discriminate the tar-
get tissue from tissues of other tissue types. CpGs with > 0.3 missingness in both the tar-
get/rest groups were excluded. Only CpGs with a delta beta > 0.05 were selected as cell 
markers. For visualization, the top 50 hypo- and hypermethylated CpGs sorted by AUC 
and delta beta were selected for each tissue type. For 5hmC samples, the same analysis 
was performed, but only CpGs with zero missingness in the target group were consid-
ered, and a delta beta > 0.02 was used as a threshold to be considered a marker.

Tissue‑specific enrichment analysis of CpG sets with TFBSs and genes

CpG sets linked to hypo- and hypermethylated tissue signatures were analyzed for 
enrichment with TFBSs [105] using the testEnrichment function and for associated 
genes using KYCG_buildGeneDBs, both from the SeSAMe R package and utilizing the 
MM285 manifest (available at https://​github.​com/​zhou-​lab/​KYCG_​knowl​edgeb​ase_​
MM285/​tree/​main/​mm10).

DNA methylation‑gene expression correlations

We assessed 11 tissue types (adrenal, brain, heart, kidney, liver, lung, spleen, stomach, 
testis, thymus, and uterus) of the fragments per kilobase million (FPKM) dataset [66] 
with our methylome dataset. Genes were included if their FPKM values exceeded 0.1 in 
at least one sample, and 5hmCpGs were selected if their beta values were greater than 
0.1 in at least one sample. The brain data from the FPKM dataset were compared with 
various neuronal tissue types (cerebellum, subcortical brain, brain cortex, spinal cord, 
sciatic nerve, and optic nerve) from the methylome dataset, focusing on selected CpG 
probes.

The RNA raw count data used for analyzing the relationship between DNA methyla-
tion and gene expression with aging were sourced from https://​twcst​anford.​shiny​apps.​
io/​maca/ [90]. This raw count data was processed and normalized using the DESeq2 
R package (version 1.42.1) [106]. We conducted a linear regression analysis to assess 
changes in gene expression with aging, accounting for each tissue type and calculated 
the slope coefficients. Genes with a linear regression p value less than 0.05 were selected 
for further analysis. For comparison with the ternary methylome dataset, we selected 
CpG probes with a beta value greater than 0.1 in at least one sample. We then performed 
a linear regression analysis of 5hmC, 5mC, and 5modC levels against tissue type and 

https://github.com/zhou-lab/KYCG_knowledgebase_MM285/tree/main/mm10
https://github.com/zhou-lab/KYCG_knowledgebase_MM285/tree/main/mm10
https://twcstanford.shinyapps.io/maca/
https://twcstanford.shinyapps.io/maca/
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aging and calculated the slope coefficients. CpG probes with a linear regression p value 
less than 0.05 were subsequently used for further analysis.
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