
Article

Scalable screening of ternary-code DNA methylation
dynamics associated with human traits

Graphical abstract

Highlights

• The methylation screening array enables scalable profiling of

human epigenomes

• Base resolution atlas of matched 5modC and 5hmC profiles

across human tissues

• Determination of 5modC/5hmC and gene expression

patterns regulating tissue identity

• EWAS identifies roles of 5hmCs in aging and epigenetic

clocks

Authors

David C. Goldberg, Cameron Cloud,

Sol Moe Lee, ..., Rishi Porecha,

Nicole Renke, Wanding Zhou

Correspondence

wanding.zhou@pennmedicine.upenn.

edu

In brief

Goldberg et al. develop the methylation

screening array for profiling large human

populations for trait associations. They

generate and analyze a 5mC-5hmC

methylation atlas across human tissue,

revealing the epigenetic context of EWAS

and GWAS loci and highlighting

overlooked roles of 5hmCs in tissue

identity, transcriptional regulation, and

epigenetic aging.

Goldberg et al., 2025, Cell Genomics 5, 100929

September 10, 2025 © 2025 The Author(s). Published by Elsevier Inc.

https://doi.org/10.1016/j.xgen.2025.100929 ll

http://creativecommons.org/licenses/by/4.0/
mailto:wanding.zhou@pennmedicine.upenn.edu
mailto:wanding.zhou@pennmedicine.upenn.edu
https://doi.org/10.1016/j.xgen.2025.100929


Article

Scalable screening of ternary-code DNA 
methylation dynamics associated with human traits

David C. Goldberg, 1 Cameron Cloud, 1 Sol Moe Lee, 1 Bret Barnes, 2 Steven Gruber, 2 Elliot Kim, 1 Anita Pottekat, 2 

Maximillian S. Westphal, 2 Luana McAuliffe, 2 Elisa Majounie, 2 Manesh Kalayil Manian, 2 Qingdi Zhu, 2 Christine Tran, 2 

Mark Hansen, 2 Jelena Stojakovic, 2 Jared B. Parker, 3 Rahul M. Kohli, 3 Rishi Porecha, 2 Nicole Renke, 2

and Wanding Zhou 1,4,5, *
1 Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
2 Illumina, Inc., San Diego, CA 92122, USA
3 Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
4 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
5 Lead contact

*Correspondence: wanding.zhou@pennmedicine.upenn.edu

https://doi.org/10.1016/j.xgen.2025.100929

SUMMARY

Epigenome-wide association studies (EWASs) are transforming our understanding of the interplay between 
epigenetics and complex human traits. We introduce the methylation screening array (MSA) to enable scal- 
able and quantitative screening of trait-associated DNA cytosine modifications in large human populations. 
The MSA integrates EWASs and cell-type-linked methylation signatures, covering diverse traits and dis- 
eases. Using the MSA to profile the ternary-code DNA methylations—dissecting 5-methylcytosine (5mC), 
5-hydroxymethylcytosine (5hmC), and unmodified cytosine—revealed a previously unappreciated role of 
5hmC in mediating human trait associations and epigenetic clocks. We demonstrated that 5hmCs comple- 
ment 5mCs in defining epigenetic cell identities. In-depth analyses highlighted the cell-type context of EWAS 
and genome-wide association study (GWAS) hits. Targeting aging, we uncovered shared and tissue-specific 
5hmC aging dynamics and tissue-specific rates of mitotic hyper- and hypomethylation. These findings chart 
a landscape of the complex interplay of the two forms of cytosine modifications in diverse human tissues and 
their roles in health and disease.

INTRODUCTION

The dynamic genome-wide patterns of cytosine modifications, 

including 5-methylcytosine (5mC), 5-hydroxymethylcytosine 

(5hmC), and unmodified cytosine (C) (collectively referred to as 

the ternary-code methylation pattern), play a critical role in regu- 

lating gene expression, 1 genome stability maintenance, 2 and 

organismal development. 3 Through these roles, DNA methyl- 

ation has been extensively associated with cellular and physio- 

logical human traits 4 and is increasingly utilized as a biomarker 

in translational research and clinical applications. 5,6 Notable ex- 

amples include applying DNA methylation to classify cancer and 

rare diseases, 7–10 liquid biopsy-based disease diagnosis, 11 and 

assessing disease hazards through methylation risk scores 12 

and forensic analysis. 13 Analysis of DNA methylation profiles is 

also crucial for elucidating gene transcription mechanisms, 14 un- 

derstanding cell identity maintenance, 15 studying variations in 

cell composition, 16 and investigating gene-environment interac- 

tions within populations. 4

Epigenome-wide association studies (EWASs) investigate large 

human populations to uncover how DNA cytosine modifications 

are associated with human traits and diseases. 4,17,18 Over the 

past decade, EWAS has been instrumental in uncovering links be-

tween DNA methylation and diverse human phenotypes. To sup- 

port these studies, methodologies developed to profile DNA 

methylation across the genome 19 are often challenged by the 

large size of the human genome, the complex DNA methylation 

biology across genomic regions, and prevalent inter-cellular het- 

erogeneity in tissues. 20 The most comprehensive DNA methyl- 

ation profiling assay is single-cell whole-genome methylation 

sequencing (scWGMS), which offers unparalleled detail by 

providing base-resolution data for individual cells. 21 However, 

the high costs and technical complexity of scWGMS often restrict 

its use to a limited number of samples. 22 As it is currently not prac- 

tical to implement scWGMS for population studies, alternative 

methodologies are more frequently used, trading off genome 

coverage, base resolution, or cell-type resolution to reduce costs 

and technical demands. These include methods for profiling 

bulk tissues 23 or fluorescence-activated cell sorting (FACS)-puri- 

fied cells (e.g., bulk deep WGBS or nanopore sequencing), 24 tar- 

geted genome capture (e.g., reduced representation bisulfite 

sequencing [RRBS] 25 ), and the use of data techniques to interpret 

sparse signals (e.g., low-pass sequencing 26 ).

The Infinium DNA methylation BeadChip has been a robust so- 

lution for large-scale methylation discovery and screening efforts 

due to its ease of experiment and data analysis, 27 base-resolution
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Figure 1. MSA design, trait representation, and benchmarking

(A) Overview of methylation technologies across genome coverage, cost, and throughput.

(B) MSA design schematic illustrating the design process. From the designable probe pool (left), CpGs whose methylations are associated with diverse 

methylation biology and human traits were identified (right).

(C) Major trait categories (red) and representative sub-traits (yellow) included in MSA; some traits may appear multiple times due to cohort differences.

(legend continued on next page)
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detection, and high quantitative granularity. This platform has 

been central to consortia such as The Cancer Genome Atlas 

(TCGA) and has amassed over 80,000 HM450 methylomes 28 

and a comparable number of EPIC array methylation profiles in 

the Gene Expression Omnibus (GEO). While sequencing-based 

methods are more commonly used for case-specific and mecha- 

nistic studies, Infinium arrays are often preferred in discovering 

population-scale trait associations, including methylation quanti- 

tative trait loci (meQTL) studies, 29,30 epigenetic risk scoring, 31,32 

and EWASs in humans 33,34 and other mammalian species. 35–37 

Such adoption is partly due to the need for population studies to 

cover a large number of samples to dissect multiple cohort cova- 

riates (e.g., sex, age, genetic background, and tissue type) and 

their interactions, and, in others, it is due to the high depths 

required to capture nuanced variations in cytosine modification 

levels. 38,39 A prominent example is 5hmCs, which are inherently 

stochastic—often under 30% per site, even in homogeneous 

cell populations, 40 unlike the bimodal distribution typical of 

5mCs—and are concentrated in specific regulatory regions, 41,42 

necessitating high quantitative resolution for accurate measure- 

ments on a small number of sites rather than sparse whole- 

genome coverage.

Array technologies rely on static probe designs that fix the 

CpG space to those selected during the array’s development. 43 

While this permits cross-study comparisons, the current design 

has the following limitations. First, WGMS of 5mCs and 5hmCs in 

human cells and tissues has significantly advanced our under- 

standing of cell-type methylation at high resolutions 24 since the 

last human array design. 44 Current EPICv2 arrays, largely inher- 

iting EPIC, have yet to incorporate the recent discoveries (e.g., of 

5hmCs). 22,24,38,39 Further, most predictive models based on ex- 

isting arrays hinge on a small number of trait associates. For 

example, most epigenetic clock models used hundreds of 

CpGs and reached high prediction accuracy. 45 Minimalistic ap- 

proaches were taken in epigenetic clock construction, 46 cell- 

type deconvolution, 47 and cancer classification. 48 These obser- 

vations motivate the notion that building compatible but 

condensed arrays for applying existing models and reassessing 

associations in significantly larger, more inclusive, and stratified 

human populations should be feasible (Figure 1A).

To implement these thoughts, we present the rationale, system- 

atic design, and the first application of the methylation screening 

array (MSA), the latest Infinium BeadChip iteration. Compared to 

previous Infinium BeadChips, the MSA has concentrated its 

coverage on trait-associated methylation (∼5.6 trait associations 

per site vs. ∼2.2 in EPICv2; STAR Methods) and cell-identity- 

associated methylation variations (∼3.7 cell signatures per site 

vs. ∼2.3 in EPICv2, with an additional 48 cell-type contrasts). 

Half of the design targeted previously reported EWAS associa-

tions. The other half leverages the latest single-cell and bulk 

whole-genome methylation profiling efforts that deeply charac- 

terize diverse human cell types. This dual approach enables 

high-resolution cell-type deconvolution, supported by reference 

methylation panels and predictive models that we have rigorously 

benchmarked in this study. Compared to the 8-sample plate 

design used in previous methylation arrays, the MSA is built on 

a novel 48-sample EX methylation platform to achieve ultra-high 

sample throughput at a lower cost per sample while screening 

for more traits per probe. Evaluation of the array’s accuracy and 

reproducibility confirms its robustness for population-scale appli- 

cations. We also demonstrate the capacity for 5hmC profiling us- 

ing a bisulfite APOBEC-coupled epigenetic sequencing (bACE) 

protocol that combines bisulfite conversion with further 

ABOBEC3A deamination. Applying the MSA to various human tis- 

sues, we characterize tissue-specific 5mC and 5hmC genomic 

distribution and demonstrate the capacity for accurate cell-type 

deconvolution. We performed an EWAS for 5hmC in aging and 

sex and identified previously under-reported contributions of 

5hmC to the prediction mechanism of epigenetic clocks. Analysis 

of 64 whole-blood methylomes demonstrated variable methyl- 

ation at established EWAS loci and age- and sex-related immune 

cell composition alterations across the lifespan.

RESULTS

Systematic design of MSA

We designed the MSA by consolidating human trait-associated 

loci from previous EWASs with novel probe designs targeting 

diverse methylation biology (Figure 1B; Table S1). Following 

quality control, the MSA contains 284,317 unique probes target- 

ing 269,094 genomic loci, with 145,426 loci overlapping EPICv2 

targets (Figure S1A). Compared to EPICv2, the MSA includes 

more SNP-targeting probes and a comparable number of CpH 

probes (Figure S1B). Human trait-associated methylations 

were curated from EWAS databases and literature, prioritizing 

statistical significance and trait diversity (STAR Methods). We 

broadly classified EWAS hits into 16 trait groups (Figures 1C 

and S1C; Table S2). As designed, the MSA is highly enriched 

for EWAS associations across human traits (Figure 1D), reflect- 

ing its targeted and compact design.

To target new CpGs not covered by previous Infinium platforms, 

we leveraged existing WGBS datasets to identify sites associated 

with cell type, cis-regulatory elements, correlation with chromatin 

accessibility and gene expression, 5-hydroxymethylation, and 

additional methylation features (Figure S1D; STAR Methods). We 

emphasized high-confidence cell-type-specific methylation dis- 

criminants to facilitate the deconvolution of complex heteroge- 

neous tissue types and the study of cell-specific processes. Using

(D) Top: MSA and EPICv2 probe enrichment EWAS hits ranked by the number of trait associations. Bottom: heatmap showing the enrichment (log 2 odds ratio) of 

major trait group probes on MSA vs. EPICv2 and random Infinium probes.

(E) Number of CpGs per cell-type contrast on MSA vs. EPICv2 for contrasts with <500 high-quality whole-genome markers.

(F) Gene Ontology (GO) term enrichment (hypergeometric test) for genes linked to CpH probes (minimum two probes per gene) on MSA and EPICv2.

(G) Heatmap of beta value correlations between cell lines profiled by MSA. ‘‘Sample source’’ indicates the culturing lab.

(H) Density plots of measured beta values for methylation titration standards.

(I) Heatmap of beta value correlations between MSA (columns) with EM-seq (row) profiles for the same cell line samples. ‘‘Sample source’’ indicates culturing lab.

(J) Tissue prediction scores using an EPIC prediction model on MSA tissue profiles (columns). Missing EPIC probes were substituted with MSA nearest-neighbor 

probes.
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pseudo bulk and sorted methylomes from brain, 49–51 pan tissue, 24 

and blood cells, 52 we performed hierarchical, non-parametric an- 

alyses to identify cell-type discriminant CpGs (STAR Methods). 

These analyses yielded thousands of hyper- and hypomethylated 

signatures across hundreds of cell types (Table S2). Despite its 

smaller size, the MSA includes more markers per cell type compar- 

ison than EPICv2 (Figure 1E), particularly for rarer cell types with 

few genome-wide designable markers. For example, our analysis 

of WGBS data identified 34 high-quality markers of the SRGAP1 

subtype of vasoactive intestinal peptide (VIP) interneurons derived 

from the caudal ganglionic eminence, 31 of which were incorpo- 

rated into the MSA, compared to three in EPICv2 (Figure 1E). 

Like EPICv2, the MSA is highly enriched for promoter, 

enhancer, and transcriptionally active regions while strongly 

depleted from quiescent, heterochromatic, and zinc finger (ZNF) 

domain binding regions, as annotated by ChromHMM 53 

(Figure S1E; Table S3). Both platforms show limited representa- 

tion of ‘‘open-sea’’ CpG sites but have a higher proportion of 

cis-regulatory element coverage (as annotated by ENCODE 54 ) 

(Figure S1F; Table S3). Compared to EPICv2, the MSA includes 

a higher proportion of proximal (5.6% vs. 3.45%) and distal 

(16.2% vs. 10.1%) enhancer elements, with slightly reduced 

CpG island coverage (12.4% vs. 16.2%). The MSA’s CpH probes 

were selected based on brain cell-type-specific CpH methyla- 

tions. These CpHs are more often linked to brain and neuron func- 

tions, implicating genes critical for neuron development and syn- 

aptic signaling (Figure 1F).

Lastly, the MSA includes at least one probe for each of 14,964 

genes, defined as overlapping or within 1,500 bp of the transcrip- 

tion start site (TSS), nearly matching the coverage of the larger 

EPICv2 array (Figure S1G). The 772 genes unique to EPICv2 

are enriched for olfactory receptors and highly polymorphic 

genes where array probe readings are often confounded by ge- 

netic polymorphism 55 (Figure S1H). In summary, the MSA targets 

both human trait-associated methylations and novel, dynamic, 

cell-type-specific sites of biological relevance.

MSA is highly reproducible and accurate

We used the MSA to generate 146 methylation profiles for eight 

cell lines (GM12878, HCT116, HeLa, Jurkat, K562, LNCaP, 

MCF7, and Raji) to assess the MSA’s technical performance. 

Most samples achieved >90% probe success rates (STAR 

Methods; Figure S1I). Probe detection rates were robust with 

50 ng input DNA but dropped to <60% in three samples with 

∼30 ng input (Figure S1I).

All cell lines showed high intra-line correlation regardless of 

the culturing lab, while inter-line correlations were markedly 

lower, reflecting differences in cell origin (Figure 1G). For 

GM12878 and HCT116, technical replicates from the same 

DNA sample yielded highly consistent methylation profiles, 

with F1 scores of 0.976 and Spearman’s ρ of 0.986 and 0.945 

for GM12878 and HCT116, respectively (STAR Methods; 

Figure S1J). We also compared the GM12878 profiles from the 

MSA to those previously generated on EPIC and EPICv2 arrays 

using the same DNA. 44 Correlations exceeded 0.97 across 

shared probes (Figure S1K), and replicate probes exhibited 

low measurement variance as designed (Figure S1L; STAR 

Methods).

Next, we evaluated the accuracy of the MSA by comparing 

MSA beta values with methylation titration standards. For each 

titration, the beta value distributions center on the expected 

levels (Figure 1H). We further compared MSA methylomes to 

those generated from the same DNA using an enzymatic 

methyl-sequencing (EM-seq) protocol 56,57 (Figure 1I). We 

observed high intra-line, but not inter-line, correlations. Similar 

patterns were seen when comparing MSA data to public 

WGBS profiles of the same cell lines (Figure S1M). These results 

confirm that the MSA yields accurate methylation measurements 

consistent with ground-truth titrations and WGBS data.

While the MSA is more scalable than prior platforms due to its 

smaller size, many probes from earlier platforms were not re- 

tained (Figure S1A). We assessed whether this loss potentially 

limits the compatibility with prior models and associations. We 

noted that this loss minimally affected the performance of eight 

prior epigenetic clocks (Figure S1N). We also reason that missing 

EPIC probes can be imputed. We implemented a sparse near- 

est-neighbor graph approach on a deep WGBS dataset of sorted 

human cells 24 with high coverage across both platforms (STAR 

Methods). 471,145 of the 714,492 non-retained sites had a near- 

est neighbor with a correlation of >0.5 across the WGBS methyl- 

omes. To evaluate model compatibility, we trained a tissue pre- 

diction model using only legacy EPIC probes and applied it to 

MSA-profiled human tissues. The reading at the nearest- 

neighbor MSA site was sufficient to predict the tissue type using 

the EPIC-only model (Figure 1J). A full list of nearest-neighbor 

mappings is provided in Table S4 for imputation use.

MSA uncovers tissue-specific methylation biology

We generated 18 methylomes for five different sorted immune 

cell types (CD4 T, CD8 T, total T cells, natural killer [NK] cells, 

and monocytes), peripheral blood mononuclear cells (PBMCs), 

and 117 methylomes from 25 different human tissue types 

(Figure S2A). Unsupervised t-distributed stochastic neighbor 

embedding (t-SNE) revealed a clear colocalization of related 

cell and tissue types, reflecting global methylome similarities 

(Figure 2A).

Cell-type proportion is a major driver of bulk tissue EWAS sig- 

nals. 58 Using reference-based deconvolution, we tested whether 

bulk MSA tissue methylomes could be resolved into constituent 

cell types (STAR Methods). Estimated cell proportions aligned 

well with known tissue biology (Figure 2B; Table S5). For 

example, heart samples were predicted to contain cardiomyo- 

cytes, heart fibroblasts, and endothelial cells, while liver samples 

were dominated by hepatocytes. Immune-related organs, such 

as the spleen and lymph nodes, showed mixed monocytes, 

T cells, and B cells. The thymus lacked B cells, which is consis- 

tent with its role as an organ of T cell maturation. 59 A few samples 

had discordant cell proportions and did not cluster with their tis- 

sue group. For example, while most pancreatic tissues were esti- 

mated as acinar and ductal cells, the most populous cell types of 

the organ, 60 one sample was enriched for granulocytes, sug- 

gesting blood contamination or sample mislabeling. Such cases 

were indicated and excluded from downstream tissue-specific 

analyses (STAR Methods).

Next, we performed one-vs.-rest non-parametric analyses to 

identify tissue-specific CpG discriminants (STAR Methods),
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revealing thousands of uniquely modified sites per tissue 

(Figure 2C; Table S6). Since bisulfite conversion does not distin- 

guish 5mC from 5hmC, we refer to total modifications as 

‘‘5modC’’ and discriminants from the standard arrays as hypo- 

or hyper-5modC sites. Most were hypomodified compared to 

other tissues (Figure S2B; Table S6). These tissue-specific probe 

sets were highly enriched in the cell-specific CpG signature lists 

curated from the analysis of public single and sorted cell data- 

sets during array design (Figure S2C; STAR Methods), support- 

ing both the array design and the discriminative performance of 

the selected probes.

To explore the role of tissue-specific methylation markers in 

the corresponding tissue biology, we analyzed the chromatin 

state distributions and gene linkages of the CpG sets. We

A

B

C

D E

Figure 2. MSA reveals tissue-specific 

methylation biology and tissue composi- 

tions

(A) t-SNE plot showing unsupervised clustering of 

MSA-profiled bulk tissues and sorted immune cells.

(B) Heatmap of cell-type proportion estimated by 

methylation-based deconvolution; columns are 

MSA-profiled tissues, and rows are reference cell 

types.

(C) Heatmaps of tissue-specific methylations (rows) 

across samples (columns). The bottom annotation 

bar indicates discriminated tissue; the left bars 

annotate hyper- vs. hypo-5modC across tissues.

(D) Enrichment of hyper- (left) and hypo- 

(right) 5modC tissue-specific CpGs in full-stack 

ChromHMM states (false discovery rate 

[FDR] < 0.05). Circle sizes represent − log 10 (FDR- 

adjusted p values) from one-tailed Fisher’s test.

(E) Heatmap showing enrichment (log 2 odds ratio) 

of tissue-specific hypo-5modCs (columns) in tran- 

scription factor binding sites (rows). Row labels are 

colored when the transcription factor is tissue 

specific and enriched in the matching tissue-spe- 

cific CpG sets.

first compared them with the full-stack 

ChromHMM states, a universal genome 

annotation learned from over 1,000 da- 

tasets comprising diverse cell types 53 

(Figure 2D). Hypermodified tissue signa- 

tures were generally absent from en- 

hancers and were enriched in promoter 

and bivalent promoter states, while hy- 

pomodified markers were enriched in 

enhancers and gene bodies. The signa- 

tures are strongly enriched in the 

chromatin state associated with the 

matching cell type. For example, cere- 

bellum and motor cortex signatures are 

enriched in EnhA6, representing brain 

enhancers. In contrast, colon and liver 

signatures were strongly enriched in 

EnhA14/A15, annotated as liver/diges- 

tive/intestine enhancers. The monocyte, 

NK cell, CD4 + T cell, and CD8 + T cell sig- 

natures were specifically enriched in EnhA7, a blood enhancer 

state. 

In addition to tissue-specific chromatin states, the signatures 

colocalized with the corresponding tissue-specific transcription 

factor (TF) binding sites (Figure 2E). For example, CpG markers 

of kidney tissues were enriched in the binding sites of SIX2, 

which regulates the specification and maintenance of nephron 

progenitors, 61 while colon signatures were enriched in the bind- 

ing of CDX2, which governs intestinal development and gene 

expression. 62 The markers were also in proximity to tissue-spe- 

cific genes. We linked each tissue CpG marker to all genes within 

10 kb and co-embedded the linked gene sets with the human 

gene atlas ontology database (Figure S2D). Related tissue types 

are localized in the gene set network, and ontology terms match
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the tissue type. Collectively, our MSA data uncovered the epige- 

nome signatures at tissue-specific TF binding sites and genes 

that regulate the corresponding tissue biology.

Lastly, we analyzed the mitotic histories of the different tis- 

sue methylomes using a subset of Polycomb-targeted CpGs 63 

and partially methylated domains (PMDs) to track the cumula- 

tive cell divisions of the tissue (Figure S2E). Applying the 

models to our tissue and immune cell methylomes yielded di- 

vision rates consistent with the relative proliferative activity of 

these tissues reported in the literature based on radioisotope 

labeling. 64 For example, the colon, small intestine, and 

T cells had the highest division rate score, consistent with 

the high cellular turnover of these tissues (Figure S2E). In 

contrast, tissues with higher fractions of post-mitotic cell 

types, such as the motor cortex, cerebellum, and kidney, 

had the lowest division rates. Mitotic activity estimates from 

PMD methylation largely correlated with those from Poly- 

comb-targeted sites. Interestingly, pancreatic and adrenal tis- 

sues showed lower PMD methylation despite similar Poly- 

comb target-based predictions. These effects were not fully 

explained by global methylation differences, which were minor 

for tissues of similar mitotic activity based on the EpiTOC2

C D

E

A B Figure 3. Analysis of global 5hmC across

human tissues with MSA

(A) Schematic of bisulfite-based 5modC (left) vs.

direct 5hmC profiling (right), where APOBEC3A 

selectively deaminates 5mC but not cytosine-5- 

methylenesulfonate (CMS) adduct.

(B) Ternary plot showing global levels of unmodi- 

fied cytosine (bottom), 5-mC (left), and 5-hmC 

(right) across tissues.

(C) Spearman correlation of cell division rate 

computed with EpiTOC2 (x axis) with mean global 

5hmC levels across tissues (y axis).

(D) Mean 5modC (top), 5mC (middle), and 5hmC 

(bottom) across consensus ChromHMM states, 

averaged by tissue type.

(E) Scatterplot of the average 5mC/(5mC + un- 

modified C) ratio vs. binned 5hmC levels across 

tissues (x axis).

model (Figure S2F). The physiological 

cause or consequence of this PMD hy- 

pomethylation in pancreatic tissue 

biology warrants further investigation.

MSA reveals 5mC-5hmC interplay 

across chromatin contexts

The standard array preparation based on 

bisulfite conversion does not discriminate 

5mC from 5hmC. 65 To test if the MSA 

is compatible with 5mC-5hmC co- 

profiling, hence producing a ternary code 

(5mC, 5hmC, and unmodified C) methyl- 

ome, we employed a bACE-seq 

protocol that produces both the total 

modification and 5hmC profiles using 

two matched array experiments 66 

(Figure 3A; STAR Methods). The 5hmC profiling is based on 

further deaminating 5mCs using APOBEC3A, while bisulfite-con- 

verted 5hmCs resist further deamination. We produced matched 

5hmC profiles of the same 117 tissue samples above. 5mC can be 

indirectly quantified by subtracting 5hmC measurements from the 

total 5modC levels obtained on matched samples. To validate 

5hmC measurements, we compared probe sets designed for tis- 

sue-specific 5hmCs identified from published 5hmC-Seal 39 and 

hmC-CATCH 38 datasets. While brain tissues had high 5hmC 

levels across most design groups, the non-brain tissues had the 

highest 5hmC in the designed tissue groups (Figure S3A).

The derived 5hmC levels were globally anti-correlated with 

the proliferation rate of the tissue (Spearman’s ρ = − 0.579, 

p = 2.6e− 11), being most abundant in neuron-enriched central 

nervous system tissues, followed by the kidney, heart, and liver, 

and lowest in the colon and lymph node (Figures 3B and 3C). 

This is consistent with the biology that 5hmCs are not directly 

copied in mitosis and become diluted in proliferating cells. 67 

While many tissues were similar in global 5modC levels, de- 

composing 5modC into 5mC and 5hmC revealed tissue-spe- 

cific patterns of each modification’s contribution (Figures 3B 

and 3D).
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5mC and 5hmC share both similarities and differences in their 

genomic distributions. The two modifications are both enriched 

in gene bodies marked by H3K36me3 and H3K79me2 and 

depleted at promoters and TSSs (Figure 3D). However, 5hmC 

is more enriched than 5mC at enhancers, whereas 5mC is 

more elevated than 5hmC in heterochromatin and repeat re- 

gions. To better understand the biochemical relationship of 

5mC and 5hmC, we quantified 5mC levels at CpG sites of vary- 

ing amounts of 5hmC. We found that as 5hmC increased, the 

5mC/(5mC + C) ratio also rose (Figure 3E), supporting the 

notion that 5mC serves as a substrate for 5hmC generation. 

Together, these analyses show that 5mC and 5hmC occupy 

overlapping but distinct chromatin compartments, with 5hmC 

accumulation dependent on cell proliferation rates and 5mC 

presence.

MSA reveals the role of 5hmC in human tissue identity 

definition and biology

Having established the global pattern of 5hmCs and their inter- 

action with 5mCs, we next asked whether 5hmCs also define tis- 

sue identity like 5modCs and the role tissue-specific 5hmCs play 

in development and tissue biology. First, global analysis sug- 

gests that tissue type predominates 5hmC profile similarities 

(Figure 4A). We performed discriminant analysis to identify thou- 

sands of tissue-specific 5hmC sites (Figure 4B; Table S7; STAR 

Methods). The majority of the tissue specificities were character- 

ized by elevated 5hmCs in the target tissue compared to non- 

target tissues (Figure S4A). Few markers were identified for 

proliferative tissues, such as skin (n = 1) and colon (n = 0), consis- 

tent with their low global 5hmC levels.

As previous studies cannot discriminate 5hmC from 5mC in 

analyzing tissue-specific biomarkers, we use our dataset to 

ask if some of the 5modC markers are attributable to 5hmCs. 

Intriguingly, tissue-specific 5hmCs were highly enriched in the 

tissue-specific 5modC gains we identified from the matched 

tissue samples (Figure 4C) and in an independent WGBS data- 

set of sorted human cells 24 (Figure S4B). 13 of 16 tissue types 

displayed this enrichment pattern, whereas no tissues had en- 

riched 5hmC in tissue-specific hypo-5modC (Figure 4C). In line 

with these observations, the tissue-specific 5hmCs were en- 

riched in promoters and, to a lesser extent, enhancers 

(Figure S4C), recapitulating the chromatin state enrichment 

pattern of hyper-5modC (Figure 2D). Functional enrichment 

analysis revealed a difference between 5modCs and 5hmCs 

in their genomic positions relative to TF binding. While tissue- 

specific TF motifs enrich tissue-specific 5modC loss, they are 

not preferentially found at sites with tissue-specific 5hmCs 

(Figure S4D).

Despite the lack of overlap between tissue-specific 5hmCs 

and tissue-specific TF binding sites, 5hmC still accumulated in 

genomic regions of tissue relevance. We derived tissue-specific 

gene sets using GTEx gene expression data (STAR Methods). 

We then tested them for enrichments of genes proximal to tis- 

sue-specific 5hmCs and 5modC loss. Genes with tissue-specific 

RNA expression showed strong enrichment in those marked by 

tissue-specific modifications (Figures 4D and 4E). For example, 

liver-specific 5hmC sites are associated with genes such as 

APOA2, HP, and TM4SF5, which show biased expression in

the liver. 68 Similarly, heart-specific 5hmCs are localized to 

CASQ2, STYXL2, and SGCG, which regulate sarcoplasmic retic- 

ulum functioning and heart physiology. 69,70 For each tissue type, 

we quantified how many tissue-specific genes were marked by 

5hmC, loss of 5modC, or both (STAR Methods; Figure 4E). 

This analysis revealed multiple modes of tissue identity regula- 

tion, whereby some tissue-specific genes are demarcated by 

the gain of 5hmCs only (Figure 4F), by the loss of 5modCs only 

(Figure S4E), and sometimes by both modes acting at different 

loci within the same gene (Figure S4F).

Next, we investigate the expression implication of tissue- 

specific modifications. For each CpG-gene pair, we quantified 

the correlation of cytosine modifications with gene expression 

across all tissues. For 5hmC, we found nearly exclusive pos- 

itive correlations, where increasing 5hmC correlated with 

increasing expression levels of the gene (Figures 4G and 

S4G; Table S8). In contrast, tissue-specific 5modC was ubiq- 

uitously negatively correlated with the expression of the linked 

genes. Interestingly, the gene expression modulation by cyto- 

sine modifications may be continuous or binary (Figure S4G). 

Together, these two modifications appear to be complemen- 

tary in regulating tissue-specific gene expression and defining 

cell identity.

5modC and 5hmC methylation biology in imprinting, 

aging, and sex specificities

To further explore methylation biology, we analyzed constitutive 

5modC patterns across all profiled tissues. We identified 13,633 

probes that were consistently unmodified (β < 0.2) and 5,012 that 

were consistently modified (β > 0.8) (Table S9). Constitutively 

modified CpGs were enriched in gene bodies, while unmethy- 

lated sites were predominantly found in CpG islands and TSSs 

(Figure S5A). Both categories were depleted in enhancer re- 

gions, which showed greater variability and are critical for tis- 

sue-specific regulation (Figure 2D).

A total of 225 CpGs displayed intermediate methylation 

across all samples (β between 0.3 and 0.7), with the testis 

deviating most from 0.5 due to the presence of haploid sper- 

matocytes (Figure 5A; Table S9). We linked intermediately 

methylated probes to nearby genes within 5 kbp, identifying 

123 proximal genes. Notable linked genes included known 

imprinting loci such as PEG10, GNAS, and MIMT1, which 

exhibit parent-of-origin-specific expression regulated by DNA 

methylation at imprinting control regions (ICRs) and differen- 

tially methylated regions (DMRs) (Figure S5B). Other linked 

genes displayed consistent intermediate methylations but are 

not documented as imprinted or monoallelically expressed 

(Figure 5B).

Next, we analyzed age-associated patterns using linear regres- 

sion, identifying widespread modification changes, the majority 

of which showed age-related gains (Figure S5C; Table S10; 

STAR Methods). Figure 5C highlights CpGs that exhibit tissue-in- 

dependent 5hmC accumulation during aging. CpGs with age- 

associated 5hmC gains were significantly enriched in CpG 

islands, TSSs, and PRC2 target regions (Figure S5D, left). The 

similarity between 5hmC and 5modC dynamics during aging 71 

(Figure S5D, right), along with significant overlap between 

5modC and 5hmC aging CpGs identified by set enrichment
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Figure 4. MSA reveals the role of 5hmC in human tissue identity definition

(A) t-SNE plot of bulk tissues clustered by 5hmC profiles.

(B) Heatmap of representative one-vs.-rest 5hmC tissue signatures (rows) across tissues (columns). The annotation bars are colored by tissue type.

(C) Dot plot showing enrichment of 5modC tissue signatures in 5hmC signatures. Circle sizes represent − log 10 (FDR-adjusted p values) from one-tailed Fisher’s 

test.

(D) Heatmap showing enrichment of genes linked to hyper-5hmC and hypo-5modC CpGs (columns) in tissue-specific expression gene sets identified using GTEx 

data of matched tissue types (rows). The annotation bar represents whether the query gene set is hyper-5hmC linked (yellow), hypo-5hmC linked (blue), or both. A 

one-tailed Fisher’s test for enrichment was used.

(E) Grouped bar chart showing the number of tissue-specific genes marked by no tissue-specific cytosine modifications (gray), hypo-5modC (blue), hyper-5hmC 

(yellow), and both modifications (green) for each tissue type.

(F) Tissue-biased genes marked only by tissue-specific 5hmC. The x axis shows mean 5hmC over linked probes; genes are colored by tissue specificity.

(G) Violin plots of Pearson correlations between tissue-specific methylations and expression of linked genes, grouped by tissue and the two types of modification 

changes.
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analysis (Figure S5E), suggests that some age-related hyperme- 

thylation may, in part, reflect 5hmC accumulation.

Given that hyper-5hmCs contribute to hyper-5modC during 

aging, we further ask if epigenetic clocks trained on 5modC 

data might have leveraged age-associated 5hmC gains in pre- 

dicting chronological and biological ages. We assessed 20 

epigenetic clocks and found significant enrichment of clock 

probe sets in 5hmC aging probes, implying that clocks incorpo- 

rate, to different degrees, 5hmC to estimate age (Figure 5D; 

STAR Methods). In fact, 5hmC profiles alone can predict chro- 

nological age in our dataset with accuracy comparable to pre- 

dictions made based on 5mC profiles (Figure 5E; Table S11). 

Comparatively, 5modC data generated the best aging predic- 

tion models and performed similarly to the established Horvath 

clock. This is likely due to 5modC clocks using both 5mC and

A

B D

E F

C Figure 5. 5modC and 5hmC methylation 

biology in imprinting, aging, and sex speci- 

ficities

(A) Heatmap showing beta values across all tis- 

sues (columns) for CpGs (rows) with intermediate 

5modC levels (0.3–0.7), suggestive of monoallelic 

DNA methylation.

(B) Mean beta values for intermediately modified 

probes for six representative genes, showing 

patterns resembling known imprinting genes.

(C) Manhattan plot of aging 5hmC EWAS signals 

(bottom) and scatterplots for representative age- 

associated 5hmC CpGs (top).

(D) Enrichment of 10 epigenetic clocks in age- 

associated 5hmC probes. Probes are ranked 

according to the p value of the 5hmC-age as- 

sociation. Representative clocks are shown on 

the right.

(E) Age prediction using clocks trained on 5hmC 

(top left), 5mC (top right), 5modC (bottom left), 

and Horvath clock (bottom right); x axis: self- 

reported age, y axis: predicted age. Plots show 

Pearson correlation coefficients, p value, and 

mean absolute error of predictions.

(F) Boxplots of 5modC and 5hmC beta values at 

representative autosomal CpGs with sex-spe- 

cific methylation.

5hmC aging patterns. Figure S5F illus- 

trates such a representative probe 

that may contribute to a 5hmC and a 

5modC clock but not a 5mC clock. 

Further investigation is needed to 

determine if a deviation of 5hmC age 

from chronological age is reflective of 

biology. 

Lastly, thousands of CpG sites showed 

sex-associated 5mC and 5hmC patterns, 

with 1,809 sites shared between the 

two modifications (Figures S5G and 

S5H; Table S12). Most sex-associated 

5modCs are linked to X chromosome 

inactivation and enriched at CpG 

islands and TSSs on the X chromosome 

(Figure S5I). We also identified 966 autosomal CpGs with sex- 

associated 5mC and 79 with sex-associated 5hmC, some 

showing differences as pronounced as those seen at X-linked 

CpGs (Figure 5F). The mechanisms underlying sex-specific 

methylation at autosomal loci and its potential role in regulating 

sex-specific expression and phenotypes remain to be explored.

MSA methylomes reveal strong tissue contexts of 

human trait associations

Leveraging the trait association focus of the MSA, we evaluated 

the capacity of MSA data to perform context annotation of EWAS 

hits. In this analysis, we focused on the tissue context using the 

primary tissue profiles produced in this study. We first note that 

for the traits investigated in the curated studies, trait-associated 

probes are more often significantly enriched in enhancers and
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promoters 53 but underrepresented in heterochromatic and 

repressive genomes (Figure S6A), consistent with their roles 

in transcriptional regulation. Traits characterized by genomic al- 

terations (e.g., Down syndrome), cell proliferation (e.g., malig- 

nancy), and frequent toxin exposure (e.g., smoking) had distinct 

and recurring chromatin feature enrichment (Figure 6A). In 

contrast, complex disease traits, e.g., diabetes and Alzheimer’s 

disease, are varied in chromatin state enrichment across 

studies.

As expected, the enhancer- and promoter-associated probes 

are more variably methylated across primary human tissue types 

(Figure S6B). To test whether such variation reveals the tissue 

context of each trait, we grouped CpGs by their associated traits 

and compared the methylation levels across tissue types 

(Figure 6B; Table S13). An intriguing correspondence between 

the perceived tissue context and the methylation rank emerged. 

For example, CpGs associated with Alzheimer’s disease showed 

the most extreme methylation in brain tissues compared to other

A

B

C

Figure 6. Tissue context of human trait associations

(A) Heatmap of enrichment (log 2 odds ratio) for trait-associated probes across chromatin states; columns are studies, and rows are chromatin states.

(B) Distributions of tissue mean beta value ranks across trait-associated CpGs.

(C) Enrichment of MSA tissue-specific methylation sets in various traits’ GWAS SNPs (one-tailed Fisher’s test, color indicates − log 10 [FDR-adjusted p value]).
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tissue types (Figure 6B). Sites with disease-related methylation 

gains have the greatest methylation readings in the brain, whereas 

sites with reduced methylation in diseases were least methylated 

in brain tissues. Similarly, probes associated with inflammatory 

bowel disease (IBD) were most methylated in the colon and small 

intestinal tissues. These results suggest a propensity of trait-asso- 

ciated CpGs to colocalize with differential methylations specific to 

the tissue that manifests the trait phenotype, underscoring the 

importance of tissue context when conducting EWASs.

We also investigated the extent to which genome-wide asso- 

ciation study (GWAS) variants colocalize with tissue-specific 

methylation. We tested the enrichment of trait-associated 

SNPs in the one-vs.-rest cell-specific methylation signatures 

identified above (STAR Methods). These analyses identified mul- 

tiple genetic variants associated with a tissue-specific trait co- 

localizing with the methylation signature of the corresponding 

tissue type. For example, SNPs associated with blood glucose 

and diabetes were colocalized with methylation markers for

A B

C D

E

F

Figure 7. Immune cell composition and 

inter-individual whole-blood methylation 

variation

(A) Validation of MSA methylome deconvolution 

with sorted immune cell methylation profiles; col- 

umns: MSA-profiled samples, rows: reference cell 

types.

(B) Estimated immune cell proportions in 64 

whole-blood methylomes.

(C) Principal-component analysis (PCA) shows 

immune cell composition and sex as major sour- 

ces of variance.

(D) Age-related immune cell composition dy- 

namics: CD4 + T cell proportions decrease and 

neutrophils increase with age. p values testing 

slope coefficients in linear regression are plotted.

(E) Sex differences in immune cell composition. p 

values testing sex-specific slope coefficients in 

linear regression are plotted.

(F) Enrichment of EWAS trait-associated CpGs in 

sites with high inter-individual methylation varia- 

tion in whole-blood samples.

pancreatic cell types, while cholesterol 

variants were localized to hepatocyte- 

specific methylations (Figure 6C). Diverse

autoimmune disorders were enriched in 

CpG markers for regulatory T cells, which 

are involved in immune system homeo- 

stasis and autoimmune suppression. 72 

Whether the genetic variants implicated 

in these diseases directly impact nearby 

tissue-specific methylation to perturb 

gene expression and function requires 

follow-up studies.

MSA detects inter-individual 

methylation variation at EWAS trait 

sites

To date, thousands of traits have been 

analyzed in EWASs using peripheral 

whole blood, a clinically accessible tissue source that provides 

sufficient DNA for array-based analysis. To explore immune 

cell dynamics and evaluate the array’s capacity for detecting in- 

ter-individual variation, we analyzed 64 whole-blood samples 

from anonymous donors using the MSA. The MSA design 

included some major epigenetic clocks (Figure S7A), and we 

verified that we could accurately predict age using the multi-tis- 

sue Horvath clock 73 on the tissues we previously profiled 

(Figure S7B). The Horvath clock and a sex prediction model 

(STAR Methods) applied to the whole-blood samples revealed 

a broad age range (8.7–58.4 years) and a sex distribution of 14 

females and 50 males (STAR Methods; Figure S7C).

Cell composition explains most bulk-tissue epigenetic varia- 

tions. To analyze inter-individual cell composition variation using 

DNA methylation, we benchmarked computational deconvolu- 

tion on MSA-based methylation profiles of sorted immune 

cells. As expected, predicted sorted immune cells contained 

>90% of the matching cell type, consistent with standard
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purification yields (STAR Methods; Figure 7A). Then, we applied 

the same deconvolution strategy to whole-blood DNA methyl- 

omes. The results yielded estimates aligned with prior literature 

(Figure 7B; mean estimates: neutrophils, 61%; CD4 T cells, 

14%; CD8 T cells, 9%; monocytes, 7%; B cells, 6%; and NK 

cells, 3%). Principal-component analysis showed that immune 

cell proportions, along with sex, explained the greatest variance 

in the dataset (Figures 7C and S7D). To examine immune cell 

composition dynamics, we regressed cell-type proportions on 

predicted age and sex. We found that aging was associated 

with a significant decrease in CD4 + T cells (p = 1.30e− 4) and 

an increase in neutrophils (p = 4.12e− 2) (Figure 7D). Sex differ- 

ences revealed higher CD8 + T cell proportions (p = 3.35e− 6) 

and lower NK cell proportions (p = 3.48e− 3) in females 

(Figure 7E).

To further assess inter-individual variations, we ranked auto- 

somal probes by standard deviation across individuals. Using 

a set enrichment framework (STAR Methods), we observed 

that sites with inter-individual methylation variation are signifi- 

cantly enriched in EWAS traits previously reported by blood- 

based EWASs, including immune system disorders and other 

environment-related traits (e.g., smoking and alcohol consump- 

tion) (Figure 7F). The new MSA probe designs showed a similar 

distribution of inter-individual variations compared to legacy 

probes, suggesting an expanded capacity for detecting blood- 

based methylation-trait links (Figure S7E). While we could not 

directly correlate methylation with phenotypic traits in our data- 

set, the results demonstrate that the MSA detects methylation 

variations associated with various physiological outcomes iden- 

tified in prior studies.

DISCUSSION

The Infinium DNA methylation BeadChip is a broadly used and 

accessible assay in human population studies. It has enabled 

trait association discoveries and predictive models, such as 

epigenetic clocks, risk scores, and disease classifiers. Previous 

Infinium BeadChips have been designed to target genomic fea- 

tures, such as gene promoters, gene bodies, and cis-regulatory 

elements. While methylation variation at these genomic features 

is indeed associated with human traits, evenly covering genomic 

elements is not as economical for trait screening applications as 

in discovery and hypothesis generation settings.

The existing methylation-based screening of most human 

traits requires relatively few loci. For instance, the Horvath clock 

for chronological age used 353 CpGs. 73 Other epigenetic clocks 

use feature numbers ranging from a few CpGs to 10,000 CpGs, 74 

which are much smaller in number than existing Infinium array 

capacities. 43 The feasibility of such minimalistic approaches 

has also been established in cancer classification 48 and cell- 

type deconvolutions, 75 demonstrating high inference precision. 

The development of the MSA can be seen as a balanced 

approach to DNA methylome-based trait screening, prioritizing 

only the probe sets that link to diverse traits and high-confidence 

prediction models for the benefit of profiling larger human 

populations.

While legacy probes were incorporated for their established 

trait associations, the enhanced scalability of the MSA may facil-

itate the repositioning of these probes for novel associations. 

Historically, populations of European descent have been over- 

represented in EWASs, potentially overlooking disease-relevant 

associations in more diverse demographics. Re-examining 

these associations in larger and more balanced cohorts will be 

imperative to dissecting the complex interplay of genetic and 

environmental influences on disease phenotypes. The legacy 

probe designs chosen for inclusion in the MSA are also 

frequently associated with multiple traits, implying that multiple 

physiological or environmental stimuli can converge on similar 

epigenetic programs. Future studies may elucidate whether 

these shared signatures represent common inflammatory or ho- 

meostatic pathways that are similarly disrupted and whether 

additional, currently under-studied disease states converge on 

the same loci.

Besides offering a balanced approach in trait screening, the 

MSA also represents an upgrade of Infinium array content to 

bridge deep, cell-type-resolution profiling and cost-effective 

population screening. While offering greater cell-type variation 

and genome-wide details, single-cell methylome profiling cannot 

be scaled to population settings. The MSA is designed to trans- 

late the cell-type-specific knowledge from single-cell and bulk 

whole-genome methylome profiles for use in the population 

setting.

Computational cell-type deconvolutions are powerful methods 

for interrogating tissue composition variation in development 

and disease. The expanded cell-specific CpG markers and 

refined annotation in the MSA enhance deconvolution granularity 

compared to EWASs based on previous Infinium platforms. For 

example, the commonly used cell epigenotype specific (CETS) al- 

gorithm for estimating brain cell proportions estimates NeuN+: 

NeuN− proportions without predicting trait-relevant subtypes. 76 

We designed cell-specific probes discriminating 174 unique cell 

types (82 brain cell types, 51 pan tissue, and 41 blood) and antic- 

ipate that these markers will enable high-resolution deconvolu- 

tion, augmenting the study of selectively vulnerable or rare cell 

populations in complex diseases and tissue types. Our results 

and other recent work have also identified an enrichment of ge- 

netic variants associated with complex traits within cell-specific 

DMRs. 22 It is not clear the extent to which methylation changes 

in these cell-specific DMRs may perturb the functioning of the dis- 

ease-relevant cell types. We anticipate that the MSA will permit 

such investigations.

Previous efforts have established the compatibility of Infinium 

arrays with other base conversion protocols, such as Tet-assis- 

ted bisulfite conversion, to profile 5hmC modifications. 77,78 Our 

analysis suggested that the new MSA is compatible with the tan- 

dem bisulfite-A3A conversion for 5hmC profiling. We applied the 

5hmC profiling to neuronal and peripheral human tissues. The 

tissue specificity mirrors previous sequencing-based 5hmC pro- 

files, suggesting the feasibility of using methylation arrays to 

implement 5hmC profiling in large sample sets. Our data also un- 

derscore the high cell-type specificity of 5hmC signals, which are 

often distinct but complementary to cell-specific hypo 5modC 

and could be additionally used to trace cell identity and tissue 

composition changes. Over aging and across tissues, we identi- 

fied dynamic 5hmC variations that are strongly linked to tissue- 

specific gene expression and aging prediction models.
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Limitations of the study

As a first application, our analysis was limited in validating the 

trait-associated probes selected due to limited metadata avail- 

ability in our study cohort. However, we found that probes asso- 

ciated with some traits in the literature were variably methylated 

in the corresponding tissue types we profiled or had a strong tis- 

sue context according to the beta value rank by tissue type 

(Figures 6B and 7F). We also had limited sample sizes for each 

tissue. While we were still able to detect some robust tissue-, 

sex-, and age-associated ternary-code methylations, we sus- 

pect that larger cohort sizes will enable more nuanced detection 

of epigenomic dynamics across human tissues and develop- 

mental and disease states. Such large cohort screening and 

detection of subtle methylation shifts will be better enabled by 

the scalability of the MSA.

We relied on publicly available RNA sequencing (RNA-seq) data 

to infer how 5modC and 5hmC regulate tissue-specific gene 

expression. Future experiments generating matched gene 

expression and ternary-code methylomes using the MSA will 

allow direct comparisons of which modifications modulate gene 

expression levels and under what developmental or clinical cir- 

cumstances epigenomic dysregulation directly associates with 

gene expression. Attempting to design a consolidated array, we 

were also limited in the number of CpG sites we could include 

and, thus, genomic feature and trait coverage. As more WGBS 

and array-based methylomes are generated, future designs may 

further refine trait- and cell-type-implicated CpG sites to maximize 

screening and discovery power most economically.

Conclusion

We systematically developed, benchmarked, and applied the 

MSA, the next iteration of the Infinium BeadChip assay, exten- 

sively consolidating trait-associated probes from prior EWASs 

and single-cell and bulk whole-genome methylome profiles. 

Our benchmark revealed the MSA as an accurate, reproducible, 

and scalable next-generation Infinium human methylation 

BeadChip targeting trait discovery in population settings. Our 

first application uncovered the cell-type context of human 

EWAS and GWAS discoveries and dynamic 5hmC association 

in peripheral tissues. We anticipate the MSA to be a valuable 

tool for methylation screening in large human populations for trait 

associations and broadly dissecting the cell-type-specific mech- 

anisms of human diseases.
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Data and code availability

• The complete MSA manifest, design criteria, technical, human trait, and 

functional annotations are available at https://zwdzwd.github.io/ 

InfiniumAnnotation.

• Informatics for MSA data preprocessing and functional analysis is avail- 

able in the R/Bioconductor package SeSAMe (v.3.22+): https:// 

bioconductor.org/packages/release/bioc/html/sesame.html.

• Additional code for analyses is available at https://doi.org/10.5281/ 

zenodo.15390877.

• The generated human cell line, primary tissue 5mC and 5hmC methyl- 

ome profiles (N = 676), and EM-seq data are available in the GEO 

with accessions GEO: GSE264438 and GSE267407.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human DNA methylation calibration standards EpigenDx 80-8060H-PREMIX

Primary human tissues CHTN https://chtn.cancer.gov/

HeLa BioChain Institute D1255811

Jurkat Thermo Scientific SD1121

Critical commercial assays

MSA Methylation BeadChip Illumina 20112612

QIAGEN QIAmp Mini Kit QIAGEN 51306

NEBNext® Enzymatic Methyl-seq Kit NEB E7120

Twist Human Methylome Panel Twist Bioscience 105520

EZ DNA Methylation Kit Zymo Research D5001

Deposited data

Raw and analyzed MSA data This paper GEO: GSE264438

Raw and analyzed EM-seq data This paper GEO: GSE267407

Experimental models: Cell lines

Human GM12878 cells Coriell RRID: CVCL_7526

Human K562 cells ATCC RRID: CVCL_0004, CCL-243

Human LNCaP cells ATCC RRID: CVCL_1379, CRL-1740

Human HCT116 cells ATCC RRID: CVCL_0291, CCL-247

Software and algorithms

SeSAMe Zhou et al. 23,79 https://bioconductor.org/packages/

release/bioc/html/sesame.html

BEDTools Quinlan et al. 80 https://github.com/arq5x/bedtools2

EpiDISH Zheng et al. 81 https://www.bioconductor.org/

packages/release/bioc/html/

EpiDISH.html

BISCUIT Zhou et al. 82 https://huishenlab.github.io/biscuit/

Enrichr Kuleshov et al. 83 https://maayanlab.cloud/Enrichr/

HOMER Heinz et al. 84 http://homer.ucsd.edu/homer/

KnowYourCG Zhou lab, CHOP https://www.bioconductor.org/

packages/devel/bioc/html/

knowYourCG.html

CytoMethIC Zhou lab, CHOP https://www.bioconductor.org/

packages/release/data/experiment/

html/CytoMethIC.html

Cytoscape Shannon et al. 85 https://cytoscape.org/

glmnet Friedman et al. 86 https://cran.r-project.org/web/

packages/glmnet/index.html

methylclock Pelegi-Siso et al. 87 https://www.bioconductor.org/

packages/release/bioc/html/

methylclock.html

epiTOC2 Teschendorff 63 https://doi.org/10.5281/zenodo.

2632937

dnaMethyAge Wang et al. 88 https://github.com/yiluyucheng/

dnaMethyAge
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue dissection

117 Fresh frozen tissue samples (age 20–95, 55 Female 62 Male) were obtained from the Cooperative Human Tissue Network 

(CHTN), and 30-50mg of tissue were dissected on dry ice.

Cell line culture

GM12878, K562 (CCL-243), LNCaP (CRL-1740), and HCT116 (CCL-247) cells (Source 1) were obtained from American Type Culture 

Collection (ATCC, Manassas, VA, USA). 1-4 x 10̂6 cells were plated and cultured for 6 days with fresh media added 2–3 days. K562 

cells were cultured in Iscove’s Modified Dulbecco’s Medium (30–2005, ATCC), 10% Fetal Bovine Serum (FBS) (45000-736, Gibco), 

and 1% penicillin/streptomycin (15140122, Gibco). LNCaP cells were cultured in Roswell Park Memorial Institute Medium (RPMI- 

1640) (30–2001, ATCC), 10% FBS, and 1% penicillin/streptomycin (15140122, Gibco). GM12878 cells were cultured with RPI- 

1640 (72400047, Invitrogen), and 15% Fetal Bovine Serum (Gibco, 45000-736), 1% GlutaMAX (Gibco, 35050061), and 1% peni- 

cillin/streptomycin (15140122, Gibco). HCT116 cells were cultured in McCoy’s 5a medium modified (ATCC,30–2007), 10% Fetal 

Bovine Serum (FBS) (45000-736, Gibco), and 1% penicillin/streptomycin (15140122, Gibco). All cells were maintained in a 37 ◦ C incu- 

bator with 5% CO2 and cultured at a 75 cm2 culture flask (Fisher, BD353136).

METHOD DETAILS

DNA extraction

Genomic DNA was extracted from 30 to 70 mg of tissue or 5.0 × 10̂6 cells for Source 1 cell lines using commercially available QIAGEN 

QIAamp Mini Kits (QIAGEN, 51304), following the manufacturer’s protocol. DNA was quantified using a Qubit 4 Fluorometer (Invitro- 

gen). For Source 2 and Source 3 cell lines, genomic DNA was purchased from BioChain Institute (HeLa - #D1255811, Raji - 

#D1255840, Jurkat - #D1255815, MCF7 - #D1255830, K562 - #D1255820).

Immune cell purification

Sorted immune cells were purified by the Human Immunology Core at the University of Pennsylvania following STEMCELL Technol- 

ogies RosetteSep Enrichment Cocktail protocols (https://cdn.stemcell.com/media/files/pis/10000000545-PIS_02.pdf). PBMCs 

were isolated using a Lymphoprep ficol layer.

Methylation titration controls

10 ng of fully methylated human blood (Thermo Scientific, SD1131) and Jurkat (Thermo Scientific, SD1121) genomic DNA were ampli- 

fied using the Repli-g Mini Kit (QIAGEN, 150023) according to the manufacturer’s protocol. Following quantification with a Qubit 4 

Fluorometer, 500ng of unamplified and amplified DNA were combined for the 50% control. Human pre-mixed calibration standards 

(0,5,10,25,50,75,100%) were purchased from EpigenDx (EpigenDx 80-8060H_PreMix), and 200ng/titration was used for testing.

EM sequencing of cell line DNA

Genomic DNA from the GM12878, K562, and HCT116 cell lines were extracted according to the QIAGEN QIAmp Mini Kit Protocol. 

The three samples were then mechanically sheared to 300 base pairs using the M220 Focused-ultrasonicator (Covaris, 500295) and 

methylated lambda control DNA. 200ng of each sample was enzymatically converted using the NEBNext Enzymatic Methyl-seq Kit

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

MSA BeadChip Manifest and Probe Annotation This paper http://zwdzwd.github.io/

InfiniumAnnotation

Single-cell brain WGBS datasets Tian et al. 22 ; Luo et al. 51 ; 

Luo et al. 49

https://assets.nemoarchive.org/dat-jx4eu3g

Sorted human cell WGBS datasets Loyfer et al. 24 GEO: GSE186458

5hmC-Seal Cui et al. 39 GEO: GSE144530

5hmC-CATCH He et al. 38 GEO: GSE134078

EWAS Atlas Li et al. 34 https://ngdc.cncb.ac.cn/ewas/atlas

EWAS Catalog Battram et al. 33 https://www.ewascatalog.org

EPICv2 data Kaur et al. 44 GEO: GSE228820

ReMap, Human Transcription Factor Binding Sites Hammal et al. 89 https://remap.univ-amu.fr

Human tissue gene expression data GTEx https://www.gtexportal.org/

Please cite this article in press as: Goldberg et al., Scalable screening of ternary-code DNA methylation dynamics associated with human traits, Cell 
Genomics (2025), https://doi.org/10.1016/j.xgen.2025.100929

Cell Genomics 5, 100929, September 10, 2025 e2

Article
ll

OPEN ACCESS

https://cdn.stemcell.com/media/files/pis/10000000545-PIS_02.pdf
http://zwdzwd.github.io/InfiniumAnnotation
http://zwdzwd.github.io/InfiniumAnnotation
https://assets.nemoarchive.org/dat-jx4eu3g
https://ngdc.cncb.ac.cn/ewas/atlas
https://www.ewascatalog.org
https://remap.univ-amu.fr
https://www.gtexportal.org/


(NEB, E7120) with the manufacturer’s protocol. The samples were then indexed during PCR amplification during PCR amplification 

using EM-Seq index primers (NEB 7140). The indexed libraries (200 ng each) were pooled and used as input for the Twist NGS 

Methylation Detection System for target enrichment. A pre-hybridization solution of blockers and enhancers was created to prepare 

the pool for hybridization (Twist Bioscience, 104180). The DNA was hybridized with the Twist Human Methylome Panel (Twist Biosci- 

ence, 105520), and the targets were bound with streptavidin beads (Twist Bioscience, 100983), followed by a post-capture ampli- 

fication. The enriched libraries were sequenced to 20× on the Illumina Novaseq 6000 PE150 platform.

5hmC profiling

Using the EZ DNA Methylation Kit (Zymo Research, D5001), 500 ng of each sample was bisulfite converted and purified following the 

manufacturer’s protocol. The samples were then denatured with DMSO at 95 ◦ C for 5 min and snap-cooled on dry ice. The samples 

were deaminated using APOBEC3A (A3A) purified following previously published protocol 90 over 2 h at 37 ◦ C. After incubation, the 

samples were purified using the Oligo Clean and Concentrator Kit (Zymo Research, D4060), following the manufacturer’s protocol. 

Two cycles of whole genome amplification were performed using 50 U of Klenow Fragment (3’→5 ′ exo-) (NEB, M0212M), dNTP so- 

lution mix (Bio-Rad, #1708874), and Random Primer 6 (NEB, S1230S). The samples were finally purified using AMPure XP Beads 

(Beckman Coulter Life Sciences, A63881).

QUANTIFICATION AND STATISTICAL ANALYSIS

CpG probe selection

Probe designability

We aligned unmethylated and methylated probe sequences to the human GRCh38 genome using the BISCUIT tool suite. 82 To iden- 

tify uniquely mapping sequences, subsequences of 30,35,40 and the entire 50nt probe sequence were aligned, and only probe de- 

signs where all subsequences had mapping quality >20 for both the methylated and unmethylated allele were considered. For these 

19,253,974 uniquely mapping CpGs, design scores reflecting hybridization efficiency and melting temperature were computed, and 

13,891,035 CpGs with design scores >0.3 were retained. Any probe sequence that contained common SNPs (dbSNP Build 151) 91 

within 5nt of the 3 ′ end was removed. Sequences with more than six additional CpGs were also removed to prevent hybridization 

interference due to variable methylation of neighboring CpGs. 9,993,793 CpGs remained from this preprocessing (‘‘Designable 

Probes’’), from which all array content was subsequently selected. When possible, high-quality probes (design score ≥ 0.6) were 

prioritized. In the final MSA manifest, >99.9% of probe sequences are uniquely mapped with high quality. The minority of probes 

with lower-quality mapping can be readily identified in the standard SeSAMe 79 preprocessing pipeline. Like the EPICv2 BeadChip, 

the MSA array includes replicate probe designs that target the same 122-mer genomic loci but may vary in the other design details. 44 

The replicate designs have the same prefix but alternative suffixes that describe the chemistry and target strand specifications. 55 For 

each of the 8,523 replicate probe groups, the standard deviation (SD) of replicate probes within cell line samples was calculated and 

compared to the SDs of non-replicate probes to assess replicate probe measurement variance (Figure S1L). Replicate probes had a 

low mean standard deviation of 0.02 compared to non-replicate probes, suggesting that the replicate probes produce consistent 

methylation measurements. Methylation can be averaged over replicate probes or the most robust replicate selected based on signal 

intensity p-value using SeSAMe. 79

Cis-regulatory elements

Human GRCh38 candidate cis-regulatory element (CRE) annotations were downloaded from the ENCODE Project Consortium 92 and 

intersected with designable CpG sites. The methylation range for each CpG was computed across sorted immune 52 and pan tissue 24 

cell types. CpGs that did not show a range >0.4 were filtered out. The remaining CpGs were grouped by CRE type and sorted by 

methylation range. 30,000 CpGs total were sampled with a bias toward enhancer elements (dELS: 64%; pELS: 21%; CTCF Only, 

CTCF-bound:11%; PLS:2%; DNAse-H3K4me3:2%).

Monoallelic/intermediate methylation

180 bulk adult normal WGBS samples (Table S1) were analyzed to identify candidate monoallelically methylated CpG sites. Auto- 

somal CpGs with minimum coverage of 20 reads and mean methylation >0.3 and <0.7 across 140 of the 180 samples were consid- 

ered intermediate methylation and intersected with the designable probe list. 207 pan-tissue sorted cell WGBS methylomes from 

Loyfer et al. 24 were also analyzed for intermediate methylation, and designable CpGs with mean methylation >0.3 and <0.7 across 

180 of the 207 samples were selected.

XCI-linked CpGs

76 high coverage (>20 million CpGs) normal female WGBS samples (Table S1) were analyzed to identify X chromosome CpG sites 

with intermediate methylation across samples (0.3 < methylation <0.7). An additional 95 normal male WGBS samples were analyzed 

to identify X chromosome CpG sites fully unmethylated (<0.3 methylation across 50 samples) or fully methylated (>0.7). The CpG sites 

intermediately methylated in female samples but unmethylated or fully methylated in male samples were intersected with the high- 

quality probe list.

Cell type-specific methylation

BED/bigWig files for single cell brain, 49–51 sorted pan tissue, 24 and sorted immune cell WGBS data 52 were downloaded and used for 

marker identification. To reduce the sparsity of single-cell brain data, pseudo bulk methylomes were generated by averaging

Please cite this article in press as: Goldberg et al., Scalable screening of ternary-code DNA methylation dynamics associated with human traits, Cell 
Genomics (2025), https://doi.org/10.1016/j.xgen.2025.100929

e3 Cell Genomics 5, 100929, September 10, 2025

Article
ll

OPEN ACCESS



methylation over the cell type labels obtained by unsupervised clustering analysis previously reported. One vs. all comparisons were 

performed across major cell type groups and hierarchically within major groups to identify subtype markers. Wilcoxon rank sum 

testing was performed between the target and out groups at each CpG site to identify cell-specific markers. Designable CpG sites 

with an AUC = 1 and a delta beta ≥ 0.3 between the in and out groups were selected, and markers were capped at 80 CpGs per cell 

type contrast. Hyper and hypomethylated signatures were balanced when possible.

5hmC analysis

5hmC-Seal 39 and hmC-CATCH 38 5hmC peaks were downloaded (5hmC Seal – GSE144530, 5hmC CATCH - GSE134078). Genomic 

intervals were intersected with the designable CpG list. For 5hmC-Seal data, the 5hmC CpG signal was treated as a binary value (1 if 

within a significant peak, 0 if not). For hmc-CATCH data, the peak coverage was applied to CpGs within the peak, and samples were 

scaled according to the total coverage. Tissue-specific 5hmC sites were identified as previously described for the WGBS data. To 

identify 5hmC sites along a continuum of tissue specificity, the top 10K most highly covered CpGs in each sample from the hmC- 

CATCH data 38 were collected and binned according to the frequencies the CpG was in the top 10K across the 60 samples. 11 

bins of 5 tissue count intervals (e.g., 1–5, 6–10, …, 55–60 tissues) were sampled equally, with sampling capped at 200 CpGs per bin. 

Cell-specific CpH methylation

Genes with cell-specific mCH methylation were downloaded, 49 and the top ten genes with the highest AUROC were selected for 

each cell type. Gene coordinates were intersected with CAC cytosines, the most prevalent mCH context found in neurons. 20 cyto- 

sines were sampled from each gene for each cell type.

DNA methylation-gene expression correlations

Matched WGBS/Gene expression data from the Roadmap Epigenomics Mapping Consortium were used to compute the Spearman 

correlation between CpGs in the high-quality designability list and genes within 10KB of the CpG. CpGs were then ranked by the 

p-value of the correlation, standard deviation and expression levels of the gene, and absolute value of the correlation. The top 

2,500 CpGs negatively correlated with the expression of the linked gene, and the top 2,500 positively correlated CpGs were selected. 

TCGA normal tissues 93 were also analyzed to identify correlated linked CpG-Gene pairs. CpGs with a correlation ≥ 0.6 or ≤ − 0.7 and 

a p-value <0.05 were additionally included (901 positively correlated, 1,620 negatively correlated).

DNA methylation-chromatin accessibility correlations

Matched DNA-chromatin accessibility data were downloaded from Luo et al. 2022, 49 and Spearman correlations were computed 

between the accessibility peaks and CpG methylation sites. Correlations with p-values <0.05 and |Spearman’s ρ| > 0.5 were selected, 

and the CpGs intersected with the high-quality designability list.

CoRSIVs

Genomic coordinates for CoRSIVs were downloaded 94,95 and intersected with high-quality designable probes.

Solo-WCGW in partially methylated domains

CpGs in the WCGW context (flanked by A or T) in common PMDs were downloaded from Zhou et al. 2018 23 and intersected with high- 

quality designable probes. This subset was further intersected with CpG islands, and 6,000 probes were randomly sampled. 

meQTLs

meQTL data was downloaded from the GoDMC database, 30 and CpGs were ranked according to the number of times a CpG was asso- 

ciated with a meQTL. The top 10K CpGs were selected. An additional 20K meQTLs were randomly sampled from Hawe et al. 2021. 29 

Imprinting-associated DMRs

Differentially methylated regions associated with monoallelically expressed genes were downloaded from Skaar et al. 2012 96 and 

lifted to GRCh38 coordinates. The DMRs were intersected with the designable probes list.

Y-linked genes

180 high coverage (>20 million CpGs) human WGBS samples (Table S1) were analyzed to identify variably methylated Y-linked 

genes. The Y chromosome CpGs were intersected with designable probes and subsequently intersected with all Y chromosome 

genes (GENCODE V39). The variance across the 180 samples was computed at every remaining CpG site. For each gene, the 

top 20 most variable probes were selected.

Human trait associations

1,067 EWAS studies were curated from the literature and EWAS databases (EWAS catalog, 33 EWAS atlas 34 ). A subset of these 

studies was manually prioritized for probe selection based on study design and results (large sample number, statistical rigor/ 

adequate covariates in analysis, statistical significance of associated probes), diversity of trait coverage, citation number, and the 

journal impact factor. Of these studies, we included all designable probes or capped the selection at the top 2500 most significant 

probes based on p-value association with the trait. For the remaining studies in the databases and curation, we selected the top 100 

most significant probes based on the p-value. Study titles and trait annotations were queried for regular expressions to consolidate all 

selected studies/traits into 16 major trait groups.

Data preprocessing and statistical analysis

All data preprocessing was done using the SeSAMe R package (version 1.22.0). 79 A manifest address file was generated using the 

MSA manifest available at https://github.com/zhou-lab/InfiniumAnnotationV1/raw/main/Anno/MSA/MSA.hg38.manifest.tsv.gz and 

the sesameAnno_buildAddressFile function. Beta values were extracted from raw IDAT files using the openSesame function with 

the built address file and default parameters. Probe detection rates were obtained using the probeSuccessRate argument with
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the openSesame function. One sample with probe detection rates <0.7 was excluded from analyses. All analyses were performed 

using R version 4.4. The FDR method was used to adjust P-values for multiple testing corrections.

Trait enrichment testing

2,398,372 EWAS hits were curated from the literature and EWAS databases 33,34 and used as a background for enrichment testing. 

Traits were annotated to 16 major trait groups by searching for regular expression terms relevant to the trait group within the study or 

trait descriptions. The odds ratio enrichment in these trait groups was computed for 3 query sets: 1) EPICv2 probes, retained MSA 

probes from prior Infinium platforms, and a random set of probes equal in size to the retained MSA probes. The log2 odds ratio was 

plotted for each platform across trait groups. For testing the enrichment of MSA and EPICv2 probes in total trait-associated probes, 

all EWAS probes were rank-ordered according to how many traits the probes were associated with. The MSA and EPICv2 probes 

were each tested as a query against the ranked probe list using a modified gene set enrichment approach 97 using the knowYourCG 

R package (version 1.0.0).

Gene linkage and ontology analysis

The Infinium MSA and EPICv2 BeadChip manifests were downloaded (https://github.com/zhou-lab/InfiniumAnnotationV1/raw/main/ 

Anno/), and probe coordinates expanded 1500bp upstream of the probe start site. The manifests were then intersected with GEN- 

CODE.v41 GTF files to identify linked genes. Gene ontology testing was performed for protein-coding genes using Enrichr 98 which 

uses a hypergeometric test for enrichment. The GO Biological Process gene set was queried. For CpH probe-linked genes, only 

genes with a minimum of 2 probes per gene were analyzed.

Sample reproducibility and accuracy

Pearson correlation coefficients were computed across cell line samples (n = 146). Correlation matrices were plotted in heatmaps. 

For pairwise replicate comparisons, beta values were first binarized as 1 if beta >0.5 and 0 if beta <0.5. F1 scores for the binarized 

vectors were computed using the MLmetrics package (1.1.3). Tissue samples were clustered by 5hmC or 5modC methylomes using 

the Rtsne R package (Version 0.17) using the Rtsne function and a perplexity of 12.

Cell deconvolution

Reference-based cellular deconvolution for sorted immune cells and whole blood samples was performed using the EpiDISH R pack- 

age 99 (version 2.18.0) with the robust partial correlations (RPC) method. The centDHSbloodDMC.m matrix provided within the pack- 

age was used as a reference for sorted immune cell deconvolution. For bulk tissue cell type inference, a reference for one vs. all cell- 

specific CpGs was created from Loyfer et al. 2023 24 as previously described and deposited to the CytoMethIC github repository 

(https://github.com/zhou-lab/CytoMethIC_models/). Cell proportion scores were computed with the cmi_predict function from the 

CytoMethIC package (Version 1.1.1).

Identification of tissue-specific markers

One-vs-rest tissue type comparisons were performed for sorted immune cells and bulk tissues. Wilcoxon rank sum testing between 

the target and out-group was performed at each CpG site. CpGs with NA values in >10% of the target group or >50% of the out-group 

were excluded. The AUC for discriminating between the target and the out-groups was computed. Only CpGs with a delta beta >20% 

and AUC ≥ 0.8 were selected as cell markers for 5modC analysis (Figures 2 and S2). For visualization, the top 50 hypo and hyper- 

5modC CpGs sorted by AUC and delta beta were selected for each tissue type. For 5hmC signatures and comparing the numbers 

and genomic distributions of 5modC vs. 5hmC signatures (Figures 4 and S4), the same analysis was performed with a delta beta of 

>5% used as a threshold for marker identification.

Transcription factor binding site analysis

BED files containing TFBS peaks were downloaded from ReMap 2022 (https://remap.univ-amu.fr 97 ). The peaks for each transcrip- 

tion factor were intersected with all MSA CpGs to create CpG-TFBS links. Tissue signatures were tested for enrichment in the TFBS 

CpG sets by computing the log2 odds ratio of the overlap.

Transcription factor motif analysis of 5modC and 5hmC tissue signatures

Tissue-specific hyper-5hmC and hypo-5modC signature probes for each tissue type were converted to BED files using the probe 

coordinates on the MSA manifest. Motif enrichment was tested using HOMER (v5.1) using the findMotifsGenome.pl function and 

the hg38 (v7.0) human genome annotation provided by the software. The top 10 most significantly enriched motifs based on q-value 

(Benjamini, minimum <0.05) were plotted for each tissue and signature type.

Enrichment testing in chromatin states

Enrichment testing in chromatin states for all probe sets in this manuscript was performed using the knowYourCG R package (version 

1.0.0) with the consensus and full-stack chromHMM knowledgebase sets and the testEnrichment function (hypergeometric distribu- 

tion, one-sided enrichment). All MSA probes were used as the background.
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Tissue-specific CpG marker validation enrichment testing

BED/bigWig files for single cell brain, 49–51 sorted pan tissue, 24 and sorted immune cell WGBS data 52 were downloaded and used for 

marker identification. To reduce the sparsity of single-cell brain data, pseudo bulk methylomes were generated by averaging methyl- 

ation over the cell type labels obtained by unsupervised clustering analysis previously reported. One vs. all comparisons were per- 

formed across major cell type groups and hierarchically within major groups to identify subtype markers. Wilcoxon rank sum testing 

was performed between the target and out groups at each CpG site to identify cell-specific markers. CpG sites with an AUC >0.95 

and a difference in beta value >0.5 between the in and out groups were selected to generate marker lists for each cell type and in- 

tersected with MSA probes. The 5modC and 5hmC tissue signatures identified from MSA profiled tissues were tested for enrichment 

in the marker lists using Fisher’s exact test with all MSA probes as the background.

Nearest neighbor analysis

Nearest neighbor analysis was performed using deep WGBS data 24 to identify neighbor genomic coordinates on MSA for non-re- 

tained EPIC probes. The WGBS data was subset for the MSA probe genomic coordinates and reference graphs were constructed 

using the nnd_knn (k=50 neighbors) function from the rnn_descent R package (version 0.1.6). The graph was then queried using the 

EPIC probe genomic coordinates from the WGBS data using the graph_knn_query function. For each CpG, the neighbor in the refer- 

ence graph with the lowest Euclidean distance was recorded. We additionally computed the Euclidean distance between every EPIC 

probe and the nearest genomic neighbor on MSA. The final CpG with the lowest Euclidean distance was retained. To test the per- 

formance of neighbor probes in classifying tissue type, we used an EPIC tissue prediction model from the CytoMethIC R package 

(version 1.1.1) and removed all probes from the model that were retained on MSA. For the remaining EPIC-only probes, we 

substituted the neighbor beta values from the MSA methylomes to compute the tissue inference.

Tissue-marker gene enrichment testing

5mod CpG signatures for each tissue type were linked to genes +/− 10KB from the CpG site (GENCODE V19). The resulting gene sets 

for each tissue type were tested for enrichment against the HumanGeneAtlas 100 downloaded from Enrichr, 83,101 and the top 5 most 

enriched ontology terms (FDR <0.05) for each tissue type’s gene sets were selected for network graphing in Cytoscape version 3.9.1 

using the log2 odds ratio for edge weights and an edge-weighted spring embedded layout.

Generation of tissue-specific gene sets

Median gene-level TPM by tissue expression data were downloaded from the GTEx Portal (v10 RNASeQCv2.4.2). One vs. all com- 

parisons were performed for each tissue type to identify tissue-biased gene sets. Wilcoxon rank sum testing was performed between 

the in-group and all other tissues at each gene to identify genes with tissue-biased expression. For each tissue type, genes with an 

AUC >0.8 and a delta TPM >1 were selected.

Tissue-specific CpG-Gene correlation analysis

Hypo-5modC and hyper-5hmC tissue signature CpGs were linked to genes +/− 50 KB using GENCODE V19 gene annotations. The 

resulting CpG-gene pair lists were filtered for those containing tissue-specific genes (previously described in the generation of tissue- 

specific gene sets). For each CpG-Gene pair, the Pearson correlation was computed.

Tissue-specific CpG-marker gene enrichment

Hypo-5modC and hyper-5hmC tissue signature CpGs (delta beta >0.05) were linked to genes +/− 50 KB using GENCODE V19 gene 

annotations. The resulting gene sets for each tissue and modification type were tested for enrichment in the derived matching tissue- 

specific GTEx gene sets using Fisher’s exact test.

Chromatin state analysis of tissue-specific CpGs

Hyper and hypo-5modC tissue signatures (delta beta >0.2) were tested for enrichment in full-stack ChromHMM states as previously 

described (Figure 2D). To directly compare the genomic distribution of hypo-5modC and hyper-5hmC signatures, CpG markers with 

a delta beta >0.05 for both modifications were tested (Figure S4C). CNS and placenta tissues were omitted due to global differences 

across chromatin states.

Epigenetic clock analysis

730 TCGA normal tissues profiled on the HM450 array were used to assess the impact of missing probes on epigenetic clock esti- 

mation. The full clock probes and the subset represented on MSA were both tested, and the predictions were compared (Figure S1N). 

For MSA-profiled tissues, the probe suffixes were removed, and duplicate probes were averaged. All age estimates were computed 

with the DNAmAge function from the methylclock package (version 1.8.0) 87 using default parameters. HypoClock and EpiTOC2 

mitotic rate estimates were computed by tissue type group using the data and code provided by the authors at https://zenodo. 

org/records/2632938. Placental tissues were excluded.
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Sex prediction

Sex for anonymous whole blood donors was inferred using the cmi_predict function from the CytoMethIC R package (version 1.1.1) 

using the sex-associated CpGs from the models represented on the MSA array. This model generates a sex score by averaging the 

difference between male-associated hyper and hypo methylation over known sex-associated CpGs.

Linear modeling

Linear modeling for age and sex associated 5modC and 5hmC was performed using the DML function from the SeSAMe package 79 

version 1.22.0, covarying for tissue type (CpG ∼ Age + Sex + Tissue). p-Values were adjusted for multiple comparisons using the FDR 

method, and CpGs with FDR <0.05 for age and sex were considered for further analysis. Testis and placenta were excluded. For 

analysis of whole blood methylomes, cell type proportions from deconvolution analysis were regressed on the computed epigenetic 

age and sex (Cell proportion ∼ Age + Sex) using the linear modeling with lm() function in R.

Set enrichment analyses

All set enrichment analyses were performed using the testEnrichmentSEA function from the knowYourCG package R package 

(version 1.0.0). For testing epigenetic clock probes against 5hmC age probes, epigenetic clock probes were downloaded from 

the dnaMethyAge R package (https://github.com/yiluyucheng/dnaMethyAge) and tested against the ranked list of age-associated 

5hmC probes, sorted according to p value from the 5hmC ∼ Age + Sex + Tissue EWAS. The top 10 most enriched clocks were 

plotted. For variable blood methylome analysis, autosomal probes were ranked according to the standard deviation across the 64 

whole blood samples. EWAS trait CpGs 33,34 were tested as queries against the variable probe list.

5hmC/5mC/5modC age clocks

To compare the capacity of 5mC, 5hmC, and 5modC to predict age, leave-one-out cross-validation (LOOCV) approach was taken 

across all bulk tissue samples with matched 5modC/5hmC data except placental tissues. For each iteration of the LOOCV, one sam- 

ple was withheld for testing, while the remaining samples were used for feature selection and model training. An EWAS was per- 

formed for each training set (Beta ∼ Age + Sex + Tissue Type), and the top 50 CpGs with the lowest P-values for Age were used 

for model training. Elastic net regression models were trained to predict age from the beta values using the cv.glmnet function (alpha = 

0.5, nfolds = 10) from the glmnet package (Version 4.1–8). Mean absolute error (MAE) and the Pearson correlation were computed for 

all held-out test samples. This procedure was repeated for each cytosine modification type. A final model was re-trained on all 

samples.

Analysis of EWAS hit chromatin state contexts

Each set of EWAS trait probes in the curated studies was tested for enrichment in 100 full-stack ChromHMM chromatin states 53 using 

Fisher’s exact test. The total pool of curated EWAS hits was used as a background set. The number of traits-chromatin state asso- 

ciations with FDR <0.05 was computed for each chromatin state and plotted. 6 major trait groups comprising 81 studies were 

selected, and the enrichment across chromatin states was plotted in heat maps.

Chromatin context analysis of EWAS methylations

The standard deviation of all probes was computed using the tissue methylomes generated on MSA and sorted to create a ranked 

probe list. Selected full-stack ChromHMM states were intersected with the list of total EWAS hits and tested as queries against the 

ranked probe list using a modified gene set enrichment approach 97 using the knowYourCG R package (version 1.0.0).

Tissue context analysis of EWAS methylations

For each set of EWAS trait probes in the curated studies, we computed the standard deviation of the probes using the beta values 

from the tissue methylomes we generated using MSA. Trait sets were sorted according to the average standard deviations, and a 

subset of the most variable traits was selected for further analysis. In these trait groups, the rank for each sample was computed 

according to beta value. The mean rank of each tissue type group was computed for every CpG in the trait, and the distributions 

of ranks for each tissue type were plotted. A Kruskal-Wallis test was performed to test for differences in mean beta value rank dis- 

tributions across tissue types. Dunn’s test was used for post-hoc testing. Summary statistics are available in Table S13.

GWAS co-localization with tissue-specific methylations

GWAS summary statistics were downloaded from the NHGRI-EBI GWAS catalog 102 (version 1.0.2.1). The top 3000 unique disease/ 

trait categories with the most SNPs were grouped and tested as independent queries against each one-vs-rest tissue/cell-specific 

CpG set from the curated lists incorporated into the final MSA design. SNPs and CpG sites were expanded by 5kbps in upstream and 

downstream directions, and genomic interval overlaps were computed using the IRanges package (version 2.36.0). The total number 

of CpG intervals for all tissue signatures was used as a background set, and Fisher’s Exact test was performed for enrichment testing.
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