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ABSTRACT
The aging of mammalian epigenomes fundamentally alters cellular functions, and such changes are the focus of many healthspan 
and lifespan studies. However, studies of this process typically use mouse models living under standardized laboratory condi-
tions and neglect the impact of variation in social, physical, microbial, and other aspects of the living environment on age-related 
changes. We examined differences in age-associated methylation changes between traditionally laboratory-reared mice from 
Jackson Laboratory and “rewilded” C57BL/6J mice, which lived in an outdoor field environment at Cornell University with 
enhanced ecological realism. Systematic analysis of age-associated methylation dynamics in the liver indicates a genomic region-
conditioned, faster epigenetic aging rate in mice living in the field than those living in the lab, implicating perturbed 3D genome 
conformation and liver function. Altered epigenetic aging rates were more pronounced in sites that gain methylation with age, 
including sites enriched for transcription factor binding related to DNA repair. These observations underscore the overlooked 
role of the social and physical environment in epigenetic aging with implications for both basic and applied aging research.

1   |   Introduction

Most biomedical research is conducted on model organisms 
living under standardized laboratory conditions (Rosenthal 
and Brown  2007). Unlike natural populations, model organ-
isms living in lab settings have stable access to food and shelter, 
experience mild, near-constant climatic conditions, and often 
have limited, static social experiences (Zipple et al. 2023). One 
consequence of keeping short-lived animals in the laboratory 
is that median lifespans are dramatically extended, partially 
through reduced extrinsic mortality from predators and compe-
tition (Tidière et al. 2016). Laboratory conditions may also in-
fluence intrinsic cellular processes such that the magnitude of 

age-related molecular changes differs between laboratory and 
field conditions, with downstream consequences for senescence.

Changes in DNA methylation are a molecular hallmark of aging 
(Jung and Pfeifer 2015; López-Otín et al. 2023). Global methyl-
ation tends to decline with age, whereas methylation of specific 
CpGs, for example, at CpG islands, becomes more methylated 
with age (Zhou and Reizel 2025; Jones et al. 2015). These age-
associated methylation changes are often used as a biometric of 
human and nonhuman animal health, with individuals showing 
accelerated epigenetic aging being at increased risk of morbidity 
and mortality (Levine et al. 2016; Belsky et al. 2022; Simpson 
and Chandra 2021; Thompson et al. 2018; Horvath and Raj 2018; 
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Horvath 2013). The aging epigenome also mechanistically con-
tributes to other cellular and physiological changes linked to 
aging, such as stem cell functional deficit and malignancy risk 
(Jung and Pfeifer 2015).

The extent to which age-associated epigenetic change is shaped 
by environmental context and whether the changes observed 
under laboratory context accurately generalize to more eco-
logically realistic conditions remain open questions. Recently, 
a study of free-living wild house mice trapped in Wales identi-
fied increased age-associated rates of change in DNA methyla-
tion patterns in a handful of loci compared to inbred laboratory 
controls (Hanski et al. 2024), suggesting that free-living condi-
tions may increase rates of epigenetic change in mice. However, 
wild house mice are genetically distinct from inbred laboratory 
strains, and rates of epigenetic aging are known to be influ-
enced by genetic variation, making causal conclusions about 
environmental influences challenging (McCartney et al. 2021; 
Lu et al. 2018).

Here, we leverage the genetic uniformity of isogenic labora-
tory mice and the ecological realism provided by naturalistic 
field enclosures to (1) assess the extent to which the laboratory 
environment influences age-associated methylation changes 
genome-wide and (2) identify a set of CpG sites in mice that are 
strongly affected by differences in environmental experiences.

2   |   Results

To address these questions, we compared rates of epigenetic 
aging between mice reared in a standard laboratory environ-
ment at Jackson Laboratory and mice whom we bred in the lab-
oratory at Cornell University before releasing them as infants 
into a semi-natural outdoor environment (hereafter “rewil-
ded” mice).

To generate rewilded mice, we released infants of the common 
laboratory mouse (strain C57BL/6J) into a controlled outdoor 
field environment (Figures 1a and S1a), which offers dramati-
cally increased social and physical ecological realism compared 
to standardized laboratory conditions (Zipple et al. 2023). This 
approach allows us to retain lab models' manipulability, repro-
ducibility, and molecular tools while allowing for dynamic and 
complex physical and social experiences.

We collected 41 liver tissue samples from rewilded mice 26–
225 days of age (Figure  1b) that had lived in the field enclo-
sure since they were 13–15 days old (±1 day, i.e., infancy). We 
then compared the liver methylomes of these rewilded sam-
ples with those collected from 20 C57BL/6J mice of similar 
age ranges that lived their whole lives in a standard labora-
tory colony (Figure  1b). As validation, we also investigated 
a larger population of rewilded mouse liver tissue samples 
(N = 73), including the 41 described above and supplemen-
tal mouse groups that we placed into our field enclosures as 
adults (Figure S1a–c).

To measure the environmental impact on rates of change in 
methylation, we modeled cytosine methylation levels (percent-
age cytosine modified) at ~275 K CpG sites (from ~285 K after 

filtering missing values) for mice reared in each environment 
(laboratory or field). We modeled percent methylation as a func-
tion of age, sex, and environment to calculate epigenetic aging 
rate estimates at each CpG site (i.e., the rate of DNA methylation 
change with respect to age, calculated as the slope estimate be-
tween methylation level and chronological age). Separately, we 
also explicitly modeled the interaction between age and living 
environment at each CpG site to test whether the rate of epigen-
etic change at each individual site was significantly influenced 
by the environment.

Mice that developed in the laboratory versus the field are moder-
ately congruent in the annual rate of methylation change across 
CpG sites (Figure  1c). Specifically, among CpGs that show 
age-associated methylation change (q < 0.01 in at least one en-
vironment), there is a strong relationship between rates of epi-
genetic aging in the two environments (Spearman's rho = 0.77, 
p-value < 0.001, N = 30,497). This strong correlation indicates 
site-specific intrinsic propensities of the DNA methylation drift 
(Figure  1c). This pattern remains robust if we include supple-
mental samples from mice moved from the laboratory to the 
field later in adulthood (Figure  S1d). Thus, although epigene-
tic aging rates are sensitive to the environment (see below), the 
mechanisms involved in this aging are largely unaffected by 
environmental differences. Representative CpGs with similar 
rates of methylation aging, faster aging in the field than in the 
laboratory, and vice versa, are shown in Figures 1d and S1e–f.

To further quantify this consistent relationship between epi-
genetic aging rates in the two environments, we categorized 
age-associated methylation changes into eight octants, depend-
ing on the direction and magnitude of change in each envi-
ronment (Figure 1c). A total of 55.0% (52.9% + 2.1%) and 34.0% 
(11.5% + 22.5%) of the age-associated methylations are bi-cohort 
joint hypermethylations and hypomethylations, respectively. In 
contrast, 10.3% (8.1% + 2.2%) of CpGs show hypermethylation 
in the field but hypomethylation in the laboratory. Under 1% 
of CpGs show hypomethylation in the field but hypermethyla-
tion in the laboratory. Age-associated hypomethylations tend 
to have larger age-related coefficients than hypermethylations 
(Figure 1e), consistent with a global decline in methylation lev-
els with age.

Age-associated changes in methylation are notably faster in 
mice reared in the field than in the laboratory (Figures 1c and 
S1d). Of age-associated joint hypermethylations, 96% (i.e., 52.9% 
in 55.0%) have faster epigenetic aging rate estimates in the field. 
Among sites that show significant (q < 0.01) increases in methyl-
ation in both environments, the average rate of epigenetic change 
is approximately 94% faster in animals living in the field (95% 
CI = 91%–98% faster, zero-intercept linear model, Figure S1g). A 
similar but dampened effect is seen in age-related hypomethyla-
tions. A total of 66% of the joint hypomethylations (i.e., 22.5% in 
34.0%) have faster aging rate estimates in the field (Figure 1c). 
Among sites that show significant decreases in methylation 
in both environments, the average rate of epigenetic change is 
28% faster in the field (95% CI = 26%–29%, zero-intercept model, 
Figure  S1g). This intriguing difference between hyper- and 
hypomethylation suggests that the epigenetic aging of the two 
groups of CpG sites may be of different cellular mechanisms and 
variably affected by environmental differences.
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A complementary analytical approach is to determine how many 
CpG sites, among those with significantly different rates of age-
related methylation change between the two environments, 
exhibit faster changes in the field. Among hypermethylation 
sites that are significantly age-associated in both environments 
(q < 0.01) and that display a significant age-by-environment in-
teraction (q < 0.05), all display faster rates in the field than in 
the laboratory (370/370 sites, 100%). A similar but slightly damp-
ened pattern is seen among joint hypomethylations (498/529 
sites, 94%).

In addition to the 41 animals reared from infancy in the field, 
we also collected liver samples from additional field-exposed 
animals introduced to the enclosures in adulthood (N = 32). The 
above environmental effects on epigenetic aging were qualita-
tively similar when these animals were included in our analyses 
(N = 73 for field mice, Figure S1d).

We performed functional enrichment analyses to further ex-
plore the differences in epigenetic aging rates observed in dif-
ferent environments. Broadly, sites that displayed congruent 

FIGURE 1    |    Comparison of age-related epigenetic changes in laboratory versus field environments. (a) An aerial view of the two enclosures where 
the field cohort lived. (b) Field and laboratory cohorts, broken down by environment, age, and sex (color). (c) Comparing epigenetic aging rates be-
tween laboratory (X-axis) and field mice (Y-axis) among those sites that show age-associated hyper- or hypomethylation in mouse liver tissues. The 
rates represent the estimated change in methylation level per year at a particular CpG site in each environment for sites that show significant age 
associations in at least one environment. The percentages of sites falling into the eight evenly spaced angular octants are labeled next to the axes. 
(d) Representative CpGs with faster epigenetic aging rates in the field than in the laboratory (upper panel: Age-associated hypermethylation; lower 
panel: Age-associated hypomethylation). (e) Boxplots comparing the distributions of absolute annual rates of epigenetic change at sites that become 
hypo- and hypermethylated in each environment.
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patterns of hyper- and hypomethylation under both environ-
ments reflect previously reported patterns of age-associated 
methylation change. Those sites that display substantial hy-
permethylation with age in both environments primarily 

localize to bivalent promoters, poised enhancers, and bind-
ing sites of the Polycomb repressive complexes (e.g., SUZ12, 
JARID2, CBX7, AEBP2, MTF2, and PCGF2, see Figure  2a), 
consistent with prior reports of their association with 

FIGURE 2    |     Legend on next page.
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replicative epimutation (Zhou and Reizel  2025) and role in 
stem cell differentiation (Schlesinger et al. 2007; Teschendorff 
et  al.  2010). Sites that became substantially hypomethylated 
with age in both environments localize to the binding sites 
of transcription factors key to hepatocyte development and 
function (e.g., PROX1, NCOR1, ONECUT1, NR5A2, and 
NFIB, see Figures 2b and S2b), suggesting the role of these hy-
pomethylation events in age-associated liver maturation. Joint 
hypomethylations are also linked to the binding of cohesin 
complex proteins (e.g., SMC3, SMC1A, RAD21, and STAG2) 
and CTCF. These scaffold proteins involved in 3D nuclear 
conformation reflect previously reported age-associated chro-
matin architectural changes (Zhou et al. 2022). Sex predicted 
methylation status, but sex-associated methylations were ex-
clusively enriched on sex chromosomes and at DMC1 binding 
sites in both the laboratory and rewilded cohorts (Figure S2a).

Sites that gain methylation faster with age in the field exhibit 
discordant patterns between mice that entered the field enclo-
sure as infants versus adults. When only including mice that 
enter the field in infancy, sites with faster methylation gains 
are enriched for ISL1 binding. ISL1 is a multi-tissue transcrip-
tion factor that regulates genes, including insulin (Zhang 
et al. 2009). The hypermethylation of ISL1 binding sites may 
be linked to metabolic adaptation to the field environment, as 
liver expression of this transcription factor inhibits lipogene-
sis and promotes lipolysis in coordination with KDM6B and 
SNAI1 (Zhao et al. 2022). Interestingly, when including sup-
plemental mice that entered the field during adulthood, sites 
that gain methylation faster in the field are enriched for sites 
bound by two DNA damage repair genes, TDG and RAD23B 
(Figure  S2c), suggesting a link to age-related DNA damage 
(Schumacher et  al.  2021), epigenetic silencing (Sriraman 
et al. 2020), and repair. Increased DNA damage and its repair 
is a molecular hallmark of aging (Li et al. 2024; López-Otín 
et al. 2023), and our results indicate that the rate of epigenetic 
change linked to this process depends on both environmen-
tal conditions and the developmental stage of environmental 
exposure. Within this supplemented analysis, sites that gain 
methylation are also enriched for DNA binding of proteins 
involved in chromatin conformation (SMC1A, CTCF, SMC3, 
and STAG1, Figure  S2c,d), suggesting age-associated 3D ge-
nome conformation impacts shaped by both gains and losses 
of methylation. Few sites gained methylation more rapidly in 
the laboratory than in the field, without any significant en-
richment of binding sites associated with these changes.

Sites that lose methylation more rapidly in the field are mod-
erately associated with transcription factors conventionally 
involved in the development of both hepatocytes (ONECUT1, 
NR5A4, and HNF4G) and non-hepatocytes, such as muscle 

cells (MYOG, MYF5, PAX7, and MYOD1) and neurons (ASCL1) 
(Figures 2d and S2e). Whether the impact of these proteins on 
DNA methylation readouts is due to tissue composition change 
or altered hepatocyte expression warrants further investigation. 
Assessing differences in rates of methylation change in other 
tissue types represents a rich opportunity to understand tissue 
and system-specific environmental impacts on the aging pro-
cess. Sites that lost methylation more rapidly under laboratory 
conditions did not show a strong signal in the enrichment anal-
ysis (Figure 2e), with the only significant binding enrichment 
observed being PPARG. This gene also regulates lipid storage in 
the liver (Wang et al. 2020).

Next, we examined sites exhibiting divergent directions of 
change in epigenetic aging patterns between the laboratory and 
the field. Such CpGs were enriched at the binding of JUNB and 
TRIM33. Both proteins have been postulated as tumor suppres-
sors and are involved in TGF-beta signaling and chromatin reg-
ulation (Xi et al. 2011; Pérez-Benavente et al. 2022, Figure 2f). 
While both field and laboratory-reared mice already exhibited 
common methylation loss at cohesin complex and CTCF bind-
ing sites (Figure  2b), mice in the field uniquely gained addi-
tional methylation at a distinct subset of CpGs bound by these 
same complexes (Figure  2f). This observation aligns with the 
understanding that CTCF binding is highly responsive to DNA 
methylation, contingent on genomic and chromatin context 
(Héberlé and Bardet 2019). Our findings suggest that 3D chro-
matin conformation changes play a role in epigenetic aging and 
contribute to the differential rates of epigenetic change between 
the laboratory and the field. Unlike sites that display hypometh-
ylation with age in both environments, no strong involvement 
of liver function and development is observed in these sites with 
divergent directions of age-associated changes in methylation 
(Figure 2f).

Finally, we asked if the observed disparity in rates of epigen-
etic change is reflected in epigenetic clock measurements. 
Epigenetic clocks are predictive models for chronological and 
phenotypic age based on methylation levels (Meer et  al.  2018; 
Thompson et al. 2018; Stubbs et al. 2017; Petkovich et al. 2017; 
Wang et  al.  2017) or other molecular markers (Simpson and 
Chandra 2021; Jylhävä et al. 2017). Although not the focus of our 
study, we calculated epigenetic ages from two epigenetic clocks 
(Zhou et al. 2022) to test whether the observed global acceler-
ations of age-related changes in methylation were reflected in 
this more selective set of CpG sites. We applied a published epi-
genetic clock of 347 CpG features (Zhou et al. 2022) and a new 
epigenetic clock of 248 CpG features (Methods) to predict the 
age of each mouse tissue sample (Figure S2f). Both clocks were 
trained on multiple tissues from laboratory-reared animals and 
tended to overestimate chronological age in both cohorts of liver 

FIGURE 2    |    Functional enrichment analysis of age-associated methylations with congruent and discrepant rates between mice living in the lab-
oratory and the field. Transcription factor binding sites enriched for (a) CpG sites that gain methylation with age in both laboratory and field-living 
mice; (b) sites that lose methylation with age in both laboratory and field-living mice; (c) sites that gain methylation faster with age in the field than 
laboratory mice; (d) sites that lose methylation faster in the field than the laboratory-living mice; (e) sites that lose methylation faster in the lab than 
field mice; (f) sites that gain methylation with age in the field-living mice but lose methylation with age in the laboratory-living mice. Transcription 
factor binding peaks were obtained from mouse ENCODE databases and overlapped with the mouse methylation array probes. CpG sites with age-
associated q-values smaller than 0.05 were used as queries.
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samples. However, the overestimations are greater in the field 
cohort than in the laboratory cohort (median residual = 2.25 and 
2.5 months in the field cohort, 1.4 and 1.8 months in the labora-
tory cohort, p = 0.003 and 0.01, Figure S2g). Despite clocks using 
a small fraction of CpG features in the genome, the higher pre-
diction residuals confirm the above observation of differential 
epigenetic aging in the field versus the laboratory. Yet, relying 
only on the single quantitative output of such a clock conceals 
the variation in the magnitude of the environmental effects de-
scribed above, which depend on whether sites become hyper- 
versus hypo-methylated with age.

3   |   Discussion

Our results lead us to two conclusions. First, the rate of epi-
genetic changes in the most used biomedical model organism 
is highly dependent on environmental context, with laboratory-
reared animals showing a global bias toward slower rates of 
epigenetic aging compared to field-reared animals. Second, this 
more rapid aging of the epigenome is particularly pronounced 
in sites that gain methylation with age, which are enriched for 
genes associated with insulin regulation, DNA damage repair, 
and CTCF and cohesin binding (Figures 2c, S2c and 1f). From 
the current data, it remains unclear if rewilded mice also show 
accelerated senescent phenotypes, including early onset disease 
development and behavioral declines, compared to those in the 
laboratory.

Our data also suggest that environmental impacts on epigene-
tic aging rates likely depend on the life stage and duration of 
exposure to different environments. While we currently lack 
the density of sampling to quantify exposure effects explicitly, 
epigenetic aging rate differences and CpG sites displaying such 
differences depending on the age of exposure were apparent in 
our data (Figures S1 and S2). This age-dependent environmen-
tal impact suggests that age-related DNA methylation changes 
follow a nonlinear pattern like other aging biomarkers (Shen 
et  al.  2024). The present study provides a blueprint and moti-
vation for future work identifying when animals are most sus-
ceptible to environmental impacts and where these life-stage 
sensitivities lie in the epigenome.

Our data hold some possible insights into the mechanisms by 
which animals may display accelerated epigenetic aging in the 
field compared to the laboratory. From an environmental per-
spective, animals in the field are exposed to a wide range of dif-
ferent environmental challenges and opportunities, including (1) 
social competition and potential resource scarcity in males, (2) 
homeostatic challenges resulting from dynamic weather experi-
ences, (3) social instability when animals die or are born, and (4) 
reproductive effort in the form of mating and territorial defense 
in males and pregnancy and reproduction in females. Each of 
these environmental experiences—which are faced to an extent 
by all natural populations of vertebrates, including humans—
may have contributed to short-term or chronic physiological 
stress, with downstream impacts on epigenetic aging rates. Our 
enrichment analysis provides some support for this interpre-
tation, as particularly rapid methylation was observed at sites 
modifying the binding of transcription factors involved in tis-
sue function (Figure 2b) and metabolism (Figure 2c), potentially 

also implicating tissue composition change (Figure  2d) and 
DNA repair (Figure S2c). Many of these factors differ in their 
intensity between the sexes, and future examinations of sex-
specific age acceleration at particular CpG sites or in particular 
tissues will be valuable.

Here, we have focused our analysis on the liver, which rep-
resents a proxy for overall metabolic output and also comes into 
substantial contact with environmental substances via detoxifi-
cation. This work will benefit from future expanded analyses to 
include multiple tissues that come into relatively high contact 
(e.g., colon, skin, and lungs) or low contact (e.g., muscle) with 
the environment. Similarly, identifying particular cell types that 
are especially sensitive to environmental factors using single-
cell methods and characterizing the transcriptional and cellular 
mechanisms by which differences in these environmental ex-
periences impact animals' physiology and aging trajectories is a 
rich opportunity for future work. And as we characterize these 
differences across additional tissue and age ranges, we will be 
able to synthesize our results with existing datasets that have 
used the same array we have used here (e.g., Razzoli et al. 2023).

One limitation of our study is that the laboratory-reared tis-
sues that we measured were obtained from Jackson Laboratory, 
while rewilded animals were bred at Cornell University from 
parents that originated at the Jackson Laboratory. Though mea-
sures of the same strain of inbred mouse are generally consistent 
across laboratories and time, laboratory-specific differences in 
both behavior and physiology have been reported, which are oc-
casionally large enough to alter qualitative conclusions (Crabbe 
et  al.  1999; Mandillo et  al.  2008; Kafkafi et  al.  2018; Jaric 
et al. 2022; Nigri et al. 2022). Given the consistent global bias 
in age-related changes in methylation that we observe and the 
magnitude of the environmental difference between the field 
enclosures and a standard laboratory environment, it is unlikely 
that this difference in laboratory sources for our control tissues 
explains our results. However, we are unable to rule this differ-
ence out as an explanatory factor.

Mice hold a central position in aging research. Our results high-
light the need to consider the environmental context of model 
organisms when studying aging-related phenotypes. Although 
therapeutics targeted at physiological and behavioral decline 
are usually tested on mice living in standard conditions, these 
mice are physiologically distinct from the same genotype, ex-
periencing more ecologically realistic conditions. Both mice 
and humans face fluctuating physical and social environments 
in natural populations. Our results demonstrate the impor-
tance of this variation in the molecular mechanisms of aging 
and highlight the importance of incorporating as much of this 
variation as possible into the lives of model organisms (Shemesh 
et al. 2024; Lee et al. 2022; Karamihalev et al. 2020).

4   |   Methods

4.1   |   Field Enclosures and Study Subjects

Field study subjects were reared and processed at Cornell 
University. Data from laboratory study subjects (see below) were 
obtained from control animals aged at the Jackson Laboratory.
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We generated our field study subjects by breeding 9-week-old 
male and female C57BL/6J mice that we purchased from 
Jackson Laboratory (Bar Harbor, ME) and mated in our labo-
ratory at Cornell University. Upon female pregnancy, males 
were removed from breeding cages to prevent re-insemination 
following parturition. When pups were 8–10 days of age, we 
anesthetized litters and their mothers using brief isoflurane ex-
posure (< 5 min) and injected either 1 (pups) or 2 (mothers) RFID 
tags (Biomark Mini HPT10) subcutaneously with a 20-gauge 
needle. The RFID tag is a permanent identification method to 
identify known-aged individuals following recapture from our 
field enclosures.

Our field subjects considered in the main text are all derived 
from this group of animals initially released as pups into one 
of our field enclosures (Enclosure A), in which we are able to 
monitor individual animals' behavior. These animals' social 
and spatial behavioral data during development were analyzed 
and published in a separate project (Zipple et al. 2025). The en-
closures at Cornell University's Liddell Field Station have been 
described in detail previously (Vogt et  al.  2024). Briefly, from 
infancy through adulthood, the subjects in the main text lived 
in an enclosure 15 m × 38 m in size, approximately 9000 times 
the area of a typical mouse cage from infancy through ~60 days 
of age. In this enclosure, we setup 16 plastic tubs (31-gal stor-
age totes, Rubbermaid, USA), placed into four neighborhoods of 
four resource zones (Figure S1b). Each tub (hereafter “resource 
zones”) contained ad libitum food access and a nestbox that pro-
vided insulation and shelter from adverse weather conditions. 
We equipped each zone with a single joint entrance/exit made 
from a 6-in.-long PVC pipe (2 in. in diameter). These resources 
and the single entrance made the resource zones highly valu-
able and defendable, mimicking commensal mice's foraging 
landscape.

After field subjects reached approximately 62 days of age, those 
that had not yet been killed for tissue collection (n = 26) were 
transferred to another one of our field enclosures (Enclosure B, 
not equipped with behavioral monitoring technology), approxi-
mately 20 m away, to continue their lives (Enclosure A, and its 
tracking technology was needed for another project). Enclosure 
B is approximately 1.5 times the size of Enclosure A, and we 
setup resource zones in Enclosure B in the same pattern as 
Enclosure A. These animals were then opportunistically cap-
tured over the next 6 months to generate our dataset of known-
age tissue samples (Figure S1a).

4.1.1   |   Animals Included in Supplemental 
Analyses Only

We took tissue samples opportunistically from animals other 
than those included in the main text (Figure  S1a,b). These 
supplemental animals fall into three groups. First, we ob-
tained tissue samples from some of the mothers of the animals 
in the main text (n = 10, hereafter Supplemental Group 1), who 
we also placed outside in our enclosure alongside these main 
study subjects (who were dependent infants at the time of 
initial exposure). Second, when we transferred field subjects 
from Enclosure A to Enclosure B, we also introduced an ad-
ditional cohort of animals into Enclosure B to supplement our 

data collection efforts. This cohort of animals was made up 
of (1) individuals of the same age as the infant-exposed field 
subjects but who had spent their lives under standard labora-
tory conditions (hereafter Supplemental Group 2; n = 12) and 
(2) the mothers of the individuals in Supplemental Group 2 
(hereafter Supplemental Group 3, n = 10).

4.2   |   Rewilded Mice Liver Methylome Profiling

Individuals were recaptured from field enclosures either by 
hand-trapping or overnight capture using Sherman traps. For 
all sample collection, animals were humanely killed via cervi-
cal dislocation followed by decapitation. We then collected one 
liver lobe and flash-froze the tissue on dry ice. Tissues were then 
stored at −80°C until DNA extraction. We extracted DNA from 
25 mg of liver tissue, following the DNeasy Blood and Tissue Kit 
for DNA Extraction protocol (Qiagen N.V.). We stored the ex-
tracted DNA at −80°C until methylome profiling.

According to the manufacturer's protocol, bisulfite conversion 
of 500 ng input liver DNA per sample was performed using 
EpiTect Bisulfite Kits (Qiagen, 59104). The Infinium Mouse 
Methylation BeadChip assays were conducted at the Center for 
Applied Genomics Genotyping Core of the Children's Hospital 
of Philadelphia.

4.3   |   Laboratory Mouse Liver Methylome Profiling

C57BL/6J mouse liver tissue was directly acquired from the 
Jackson Laboratory. Extraction of genomic DNA from mouse 
liver tissues follows previous work (Kaur et  al.  2023). The 
whole liver tissue was homogenized using a tissue homog-
enizer (OMNI, TH115) in 500 μL of lysis buffer containing 
10 mM Tris pH 8.0 (VWR, 97062-674), 300 mM NaCl (VWR, 
10128-484), 0.5% SDS (Invitrogen, 15553027), and 5 mM 
EDTA (VWR, 10128-442). After adding 15 μL of Proteinase K 
(NEB, P8107S), the solution was incubated at 55°C overnight. 
Subsequently, 100 μL of the solution was combined with an ad-
ditional 400 μL of lysis buffer and incubated at 55°C for 2 h. The 
500 μL of the solution was placed into a 5PRIME Phase Lock 
Gel tube (Quanta bio, 10847-802) pre-centrifuged for 1 min. 
500 μL of phenol/chloroform/isoamyl alcohol (Sigma-Aldrich 
77617) was added to the phase Lock Gel tube. The aqueous 
phase solution was transferred to a new 1.5 mL centrifuge 
tube (Eppendorf, 05414203). Five hundred microliters of 100% 
isopropanol (MilliporeSigma, EM1.09634.1011), GlycoBlue 
(Invitrogen, AM9515), and Ammonium acetate solution 7.5 M 
(Sigma-Aldrich, A2706) were added to the tube. The solution 
was vortexed and incubated at −20°C for 30 min up to O/N. 
Samples were centrifuged at 16,000 g for 30 min at 4°C and 
washed twice by adding 1 mL 70% EtOH (MilliporeSigma, 
EM1.00983.1011). After the last wash and removal of 70% 
EtOH, the samples were air-dried for 10 min and resuspended 
in 200 μL of the Tris buffer pH 8.0 (VWR, 97062-674) and in-
cubated at 55°C for 10 min. DNAs that were not completely 
dissolved were incubated at 4°C overnight. If the dissolved 
DNA did not exhibit a transparent color or the DNA quantity 
was inadequate, an additional bead purification step was car-
ried out. Briefly, 2× volume of AMPure XP (Beckman Coulter, 
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A63881) was added to the DNAs, mixed thoroughly, briefly 
spun down, incubated the mixture for 5 min at room tempera-
ture, placed on a magnet stand, washed two times with 500 μL 
of freshly made 80% EtOH, and allowed to dry for 3–5 min. 
The final elution was performed using 100–200 μL autoclaved 
ultrapure water. DNA amount was measured using the Qubit 
4 Fluorometer (Invitrogen) with the dsDNA HS Assay Kit 
(Invitrogen, Q33231).

DNA bisulfite conversion was performed using the EZ DNA 
Methylation Kit (Zymo Research, D5001) or EZ-96 DNA 
MethylationTM MagPrep (Zymo, D5040). Samples with bisul-
fite converted by the EZ DNA Methylation kit were performed 
according to the manufacturer's instructions with the specified 
Illumina Infinium Methylation Assay modifications. Samples 
that bisulfite converted by EZ-96 DNA MethylationTM MagPrep 
(Zymo, D5040) were performed using the same process as the 
above. The Infinium Mouse Methylation BeadChip assays were 
conducted at the Center for Applied Genomics Genotyping Core 
of the Children's Hospital of Philadelphia.

4.4   |   Public Laboratory Mouse Liver Methylome 
Dataset

We also included 10 C57BL/6J lab mouse liver samples from a 
prior study (GSE184410; see Table  S1 for sample accessions). 
IDAT files were downloaded and processed using the openSes-
ame workflow with default parameters.

4.5   |   Data Preprocessing and Analysis

All IDAT files were processed using the openSesame workflow 
with default parameters (Zhou et al. 2018). The data quality is 
assessed using the sesameQC pipelines. All samples have over 
90% probes passing the signal detection threshold (pOOBAH 
detection p-value < 0.05).

We produced two sets of estimated rates of age-related change 
in methylation status using the DML function from the 
SeSAMe package (Zhou et al. 2018), one for our field cohort 
and one for our laboratory cohort. We built a third model that 
explicitly modeled this interaction to establish significant age-
by-environment interactions. To assess a bias in the number 
of sites that showed a significant interaction between age and 
environment, we counted the number of significant interac-
tions in each direction (i.e., rates in the field are faster than 
laboratory or vice versa) for CpG sites that significantly in-
creased or decreased in methylation status over time in both 
cohorts.

To quantitatively assess the relationship between age-related 
rates of change in methylation in each environment, we built a 
no-intercept linear model (i.e., anchored to the point (0,0)) using 
estimated rates of change in each environment for sites where 
the age-associated q value in each environment was < 0.01 
(Figure S1g). These represent the subset of CpG sites in which 
we have the most confidence that methylation status changes 
with age. We derived an estimate and uncertainty value from 

this model for (1) sites that lose methylation in the laboratory 
with age and (2) sites that gain methylation in the laboratory 
with age.

4.6   |   CpG Probe-Wise Enrichment Analysis

Enrichment testing in mouse ENCODE transcription factor 
bindings and other CpG databases for all probe sets in this work 
was performed using the testEnrichment function from the 
knowYourCG R package (version 1.0.0). The mouse Infinium 
BeadChip's cg probes are used as the background probe uni-
verse (Zhou et al. 2022). As the mouse array preferentially de-
signed enhancer and promoter CpGs (Zhou et al. 2022), we used 
a higher threshold at 0.15 in testing methylation gains. Without 
thresholding, the gains showed no statistically significant term. 
We used a similar −0.15 threshold for hypomethylation, and the 
result is shown in Figure S2b.

4.7   |   Epigenetic Clock Analysis

We tested a previously published epigenetic clock that uses 
347 features (Zhou et al. 2022). For validation, we developed 
another clock using a different set of 248 CpG methylation 
features. We derived the mouse epigenetic clock and biolog-
ical age estimates using previously published data (Zhou 
et  al.  2022). When constructing this clock, we collected 706 
public mouse tissue methylomes (Table  S1) and constructed 
an epigenetic clock for the MM285 array using an elastic net 
framework. The elastic-net regularized linear model was built 
using glmnet. To select the most predictive CpGs, we set alpha 
to 0.5 and lambda to 0.1633, selected using the cv.glmnet func-
tion, which automatically optimizes the mean absolute error 
of the model using 10-fold cross-validation. Only autosomal 
probes were used as model features. This procedure leads to 
an epigenetic clock of 248 CpG probes with an estimated mean 
absolute error of 1.2 months.
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Data Availability Statement

The generated mouse methylome profiles (N = 93) are available in the 
Gene Expression Omnibus with accession GSE269932. Other public 
laboratory mouse liver methylomes (N = 7) and additional samples for 
epigenetic clock construction can be found in GSE184410 (sample ac-
cessions listed in Table S1). Informatics for mouse methylation data pre-
processing and functional analysis is available in the R/Bioconductor 
package SeSAMe (version 3.22+): https://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​sesame.​html. The epigenetic clock is available at 
https://​github.​com/​zhou-​lab/​CytoM​ethIC_​models/​blob/​main/​models/​
Age_​MM285_​20230​101.​rds.
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