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Biochemical foundation of DNA methylation inheritance
DNAmethylation is defined as the methylation of the 5′-carbon of the DNA cytosine base, or 5mC
in short, primarily in the context of cytosine–phosphate–guanine (CpG) dinucleotides [1]. The
chemically stable methyl group is enzymatically deposited by DNA methyltransferases (DNMTs)
[2]. It can be iteratively oxidized by the TET enzymes [3] and AID/APOBEC-mediated deamination
[4] or entirely removed if followed by base-excision repair [5].

The key property that puts DNA 5mC in the spotlight of genomics is that it is mitotically heritable.
The progeny cells from mitotic division copy the methylation pattern of the parental cells. This
mitotic transmission of information is achieved by the maintenance DNA methyltransferases,
mostly through DNMT1 in humans in the cell cycle S phase [6]. A multidomain RING-type E3
ubiquitin ligase UHRF1 first recognizes hemimethylated cytosines via its SRA domain [7–9]. It
then flips the methylated cytosine on the parent strand and binds DNMT1 to its replication
focus targeting sequence (RFTS) via the SRA domain [10]. The recruited DNMT1 thenmethylates
the newly synthesized DNA at the replication foci. DNMT1 often remains tethered to UHRF1 and
PCNA during the methylation reaction and processively methylates neighboring cytosines [11].
This recruitment is critically timed as DNMT1 is diffusely distributed in the non-S phase [6], largely
associating heterochromatin [12]. DNMT1 cannot copy the oxidative intermediate, 5-
hdyroxymethylcytosine (5hmC), generated by the TET enzymes [13,14]. Thus, although 5hmC
is chemically stable [15], it cannot be copied during the cell cycle and will be passively diluted in
the cell cycle [16].

Mitotic epimutation rates
Genome-wide DNA methylation patterns are modified in a programmed manner during embryonic
development. After fertilization, the embryo undergoes genome-wide demethylation, partly depen-
dent on the TET proteins. TET-dependent demethylation at the early embryonic stage requires cellular
replication [17]. Later, an extensive genome-wide wave of de novomethylation is executed at implan-
tation, except for CpG islands, which remain hypomethylated. Then, during tissue specification,
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thousands of cell-type-specific enhancers undergo demethylation [18,19]. Low DNA methylation
levels in enhancer and promoter sequences allow the binding of transcription factors that often prefer
unmethylated cytosine [20–22] and exclude DNMTs frommethylating these genome regions in coor-
dination with histone modifications [23]. Thus, tissue-specific demethylation orchestrates the expres-
sion of cell-type-specific gene repertoire [19].

Besides these programmed methylation changes, mitotic divisions, akin to Muller’s ratchet [24],
accumulate randommethylation changes over cell replication due to imperfect methylation main-
tenance [1]. The measured rates of mitotic epimutation (Table 1) represent methylation alterations
between two temporal moments of parent and daughter cells. Most measurements have found
dramatically higher error rates in the transmission of DNA methylation compared to the genetic
code, indicating a less stringent mechanism for preserving the methyl mark. The inconsistency
between error rates measured in different studies is related to cell identity, which includes
in vitro versus in vivo environment, stem cells versus differentiated cells, and cancer versus normal
cells. In addition, differences in the accuracy of copying DNA methylation could be attributed to
the specific genomic region. For example, actively transcribed genes [25] and transcription factor
binding sites tend to have fewer errors. Promoter CGIs have more stable methylation inheritance
than nonpromoter CGIs [26]. Finally, the epimutation rate is highly dependent on sequence
context. For example, it was found that isolated CpGs and CpGs flanked by A or Ts, solo-
WCGWs, lose more methylation over cell divisions [25]. Previous enzymology study suggests
variations in the NNCGNN flanking sequences can lead to a ~100-fold difference in base-
flipping efficiency of DNMTs [27]. Further studies are needed to characterize epimutation rates
and their dependence on cell, genomic, and sequence context (see Outstanding questions).

Enzymatic governors of replicative epimutation rates
Errors in the DNA sequence are typically introduced by imperfect DNA polymerase action and are
subject to correction through DNA repair mechanisms. Similarly, epimutations, which mostly
occur during DNMT1-driven methylation maintenance, are subject to correction and remodeling
through active methylation and demethylation by DNMT3s and TETs [28]. The dominance of
passive (DNMT1) versus active (DNMT3A/B and TETs) mechanisms can vary significantly between
genomic regions [29] (Figure 1). Transcribed gene bodies exhibit high de novo DNAmethylation as
their histone H3K36me3 marks recruit DNMT3B via the PWWP domain of the enzymes [29,30].
Table 1. Replicative epimutation rate measurements from prior studies

Study Epimutation rate Method

Wigler et
al. [1]

91–97%, <85%, and ~95% for three different
sites

Three sites in DNA cloned to cultured mouse cells

Pfeifer et
al., [175]

99.9% per site per generation PCR-aided sequencing of PGK1 promoter of
X8/6T2 human cells

Issa et al.,
[65]

1% every 3 years ERA promoter methylation gain in colon mucosa

Ushijima et
al., [26]

99.85–99.92% per site per generation (error =
0.018–0.032 errors/site/21.6 generations)

Bisulfite sequencing of specific CpGs in HMEC cells

Siegmund
et al.,
[176]

0.0003 or 0.0005 per CpG site per division Bisulfite sequencing of primary colorectal cancers

Ming et al.,
[38]

Methylation maintenance ratio reach 50% in
4 min, 80% in 30 min, and 10 h to close to
complete.

Single-molecule measurement of parent and
daughter strand methylation using Hammer-seq in
HeLa cells
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Figure 1. Cellular governors of the replicative epimutation rates. The direction and magnitude of methylation change per cell division is illustrated at four distinct
genomic regions: enhancers, Polycomb targets, gene bodies, and late replicating domains, dominated by TETs and DNA methyltransferases (DNMTs), respectively.
The methylation turnover rates are labeled in orange circles.
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Similar enhanced maintenance might also be true for the H3K36me2-marked intergenic genome,
which recruits DNMT3A [31–33]. Conversely, TET-mediated active demethylation predominantly
influences transcription factor binding at cis-regulatory enhancers [34–36]. Consequently, gene
bodies and enhancers are associated with lower replicative epimutation rates [25]. Their alterations
in DNA methylation during differentiation are typically not classified as epimutations, although their
presence can often complicate the measurement of epimutation rates.

When active correction mechanisms are reduced, observed methylation levels predominantly
reflect the dynamics of DNMT1-mediated maintenance (Figure 1). In such cases, the replicative
epimutation rate is significantly influenced by the writer enzyme activities and cell proliferation
dynamics [199]. DNMT1 and UHRF1 mutations lead to impaired interaction with the replication
fork and reduced DNA methylation maintenance [38]. Rapidly proliferating cells exhibited
higher epimutation rates in the late-replicating DNA [25], while cells in cell cycle arrest do not
exhibit methylation changes at these sites [199].
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Important caveats to the described paradigm are that active methylation turnover, switching DNA
cytosines to 5-methylcytosines and back by DNMT3s/TETs, also introduce programmed
changes for cell differentiation purposes and stochastic age-related changes. Moreover, the
maintenance methyltransferase (DNMT1) itself, can also actively correct epimutation through
nonreplicative de novo methylation capacity [37,38]. The former is exemplified by TETs being
master regulators of stem cell differentiation [39] and DNMT3A contributing to Polycomb target
methylation gains [40]. The latter has been observed mainly in certain repetitive elements
[41] and the neighbor-guided activity of DNMT1 [42], where the enzyme actively de novo
methylates or avoids de novo methylating certain CpGs, depending on the methylation state
of neighboring CpGs. DNMTs [11] and potentially TET enzymes [43] already exhibit
processivity in their action, leaving neighboring sites consistently methylated. Therefore, the
neighbor correction mechanisms may modulate the epimutation rate in both passive and active
maintenance models [42].

Genomic contexts of replicative epimutations
In early embryonic development, reprogramming events uniformly establish the baseline methylation
state across the cell population (Figure 2). As aging progresses, cells independently and randomly
alter their methylation states, leading to a population-wide average methylation percentage nearing
50%. This convergence in aging results from replicative epimutations, indicating a state of
high disorder, as quantified by information entropy [44].

The epimutation directionality (gain or loss) depends on the baseline methylation levels. Several
decades of research across cancer tissues [45–47], immortalized cell cultures [48,49], primary non-
malignant tissues with varying turnover rates [49], and rodents of different donor ages [48] have
quantitatively characterized mitotic hypo- and hypermethylation in mammalian genomes
(Figure 3). Mitotic hypomethylation commonly occurs at the late replicating genome (Figure 1). This
is due to the delayed remethylation of the nascent strand synthesized in the S phase of the cell
cycle [50]. The late replicating genome is heterochromatic, sparse in CpG density, rich in transposable
elements, attached to the nuclear lamina, and marked by histone H3K9me2/3 [53,182–184,186]
(Figure 1). Related genomic features; for example, large organized chromatin K9 modifications
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Figure 2. Replicative epimutation rates over organismal development. Hyper- and hypomethylation processes are
dichotomized and converge to 50% methylation levels starting from organogenesis and progressing over chronological time
and cancer. Different cell types have different mitotic histories depending on intrinsic turnover rates.
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Replicative hypomethylation

1983-1985 
Global hypometh identified in human 
cancer tissues 
(Feinberg and Volgelstein 1983, 
Gama-Sosa 1983, Goelz et al. 1985)

1996-2010 
Hypometh occurs at 
repeat elements. (Jurgens 
et al. 1996, Bollati et al. 
2009, Christensen et al. 
2009, Jintaridth and 
Mutirangura 2010)

1983-1987 
Hypometh occurs 
with aging, noted in 
mouse cells (Wilson 
and Jones 1983, 
Wilson et al. 1987)

2010 
Hypometh depends on local 
sequence context. (Edwards 
et al. 2010)

2011 
Hypometh is exempt 
at active gene body. 
(Aran et al. 2011)

2009-2010 
PMD defined in the frist 
human cell line WGBS 
and linked to late 
replication. (Lister et al. 
2009)

2018 
Hypometh linked to cell 
division across lifespan 
(Zhou et al. 2018)

2018 
Tissue-specific hypometh 
mapped (Salhab et al. 2018)

2022 
Hypometh used to 
build mitotic clocks 
(Endicott et al. 2022)

2012 
Cancer cell hypometh occurs 
at lamin-attached domains 
(Berman et al. 2012)

1982 
Global hypometh is identified in primary human 
tissues and immortalized cell cultures. 
(Ehrlich et al. 1982)

1967-1978 
Global hypometh 
associated with aging in 
humpback, cattle and rat. 
(Berdyshev et al. 1967, 
Vanyushin et al. 1973, 
Zinkovskaia et al. 1978)

Replicative hypermethylation

2007 
Hypermeth located to Polycomb 
targets (Widschwendter et al. 2007, 
Ohm et al. 2007, Schlesinger et al. 
2007) 2010 

Polycomb hypermeth in aging and 
cancer overlap (Teschendorff et al. 
2010)

1994-2003 
Promoter hypermeth found in 
normal tissue aging and linked 
to cancer predisposition (Issa 
1994, Ahuja 1998, Nakagawa 
et al. 2001, Waki et al. 2003)

2011-2020 
Genome-wide mapping of 
related unmethylated regions:  
Lowly-methylated regions 
(LMR) (Stadler et al. 2011) 
DNA methylation valleys (DMV) 
(Xie et al. 2013), canyons 
(Jeong et al. 2014), and nadirs 
(Zhang et al. 2020)

2006-2008 
Discovey and 
characterization of CGI-
seeded polycomb targets 
(Bernstein et al. 2006, Tanay 
et al. 2007, Ku et al. 2008)

2020-2022 
Hypermeth linked to 3D 
conformation change 
(Kraft et al. 2022)

2021 
Mechanism of DNMT3A 
recruitment to PcGT 
(Weinberg et al. 2021, Gu 
et al. 2022)2016 

Hypermeth 
used to build 
mitotic clocks. 
(Yang et al. 
2016)

1986-1996 
Specific gene promoter hypermeth is 
identified in human cancers. (Baylin et al. 
1986, Silverman et al. 1989, Nagatake et 
al. 1996)

1990 
CpG island (CGI) 
hypermethylation 
identified in mouse 
cell lines, systems 
of prolonged
division history. 
(Antequera et al. 
1990, Jones et al. 
1990)

2016-2017 
Hypermeth 
correlated with 
cancer risk. 
(Yang et al. 
2016, Klustein 
et al. 2017)
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Figure 3. Historical timeline of the discovery of replicative hypo- and hypermethylations. Full reference links follow. Replicative hypomethylation: Berdyshev
et al. [177], Vanyushin et al. [178], Zinkovskaia et al. [179], Ehrlich et al. [49], Feinberg and Volgelstein [47], Gama-Sosa [46], Goelz et al. [45],Wilson and Jones [180], Wilson
et al. [48], Jurgens et al. [181], Bollati et al. [182], Christensen et al. [183], Jintaridth and Mutirangura [184], Lister et al. [54], Edwards et al. [185], Aran et al. [186], Berman
et al. [53], Zhou et al. [25], Salhab et al. [85], Endicott et al. [145]. Replicative hypermethylation: Baylin et al. [66], Silverman et al. [187], Nagatake et al. [188], Antequera et al.
[189], Jones et al. [190], Issa [65], Ahuja [64], Nakagawa et al. [63], Waki et al. [62], Bernstein et al. [59], Tanay et al. [60], Ku et al. [61], Widschwendter et al. [56], Ohm et al.
[57], Schlesinger et al. [58], Teschendorff et al. [82], Stadler et al. [191], Xie et al. [192], Jeong et al. [193], Zhang et al. [194], Yang et al. [195], Klustein et al. [102], Weinberg
et al. [40], Gu et al. [196], Kraft et al. [197].
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(LOCKS) [51], lamina-associated domains (LADs) [52,53], partially methylated domains (PMDs) [54],
and DNA methylation prairies [55], display similar behavior of replicative hypomethylation.

In contrast, mitotic hypermethylation preferentially occurs at Polycomb targets [56–58], broad
CpG-dense genomic regions [59–61] implicated in normal tissue aging, cancer, and cancer
predisposition [60,62–66]. These genomic regions hierarchically associate Polycomb repres-
sive complexes (PRCs), depositing the histone H3K27me3 modification [67]. PRCs, particu-
larly PRC2.1 and ncPRC1.1, nucleate at unmethylated CpG islands [60,68,69], as clustered
CpGs facilitate the Polycomb protein dimerization and stabilization [68]. Once nucleated, PRCs fur-
ther spread H3K27me3 to neighboring unmethylated DNA to form broader repressive chromatin
[69,70]. Strong evidence suggests that DNA methylation and its void are sufficient in excluding
and triggering H3K27me3 [71–75]. The recruiting histone marks of DNA methylation H3K36me2/
Trends in Genetics, Month 2024, Vol. xx, No. xx 5
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3 also inhibit PRC activity [76–79]. Therefore, the Polycomb target status stems from an earlier,
unmethylated state. Overlapping genomic features, such as low methylated regions (LMRs) [191],
DNAmethylation valleys (DMVs) [192], canyons [193], nonmethylated islands [200], and DNAmeth-
ylation nadirs [194,197], display similar replicative hypermethylation.

Mechanistically, the replicative methylation gain at Polycomb targets can directly be attributed to
Polycomb products. Indeed, PRC1was shown to producemonoubiquitylated histone H2A lysine
119 (H2AK119ub) that interacts with DNMT3A [40]. Histone monoubiquitylation might also
involve disrupted functions of other factors maintaining the hypomethylation state, such as TET
enzymes [80] and QSER1 [81]. Since Polycomb targets play a key role in rapid stem cell differen-
tiation [60], their methylations irreversibly block gene activation [82]. This change represents
an epigenetic switch that perpetuates gene repression [83] and affects the capacity of stem
cells for rapid differentiation [60]. Moreover, this switch affecting tumor suppressors may promote
tumorigenesis [58].

Cell-type specificity of replicative epimutations
The extent to which replicative epimutation is consistent across cell types or possesses unique
cell-type-specific characteristics is not fully characterized. The expression variation of methylation
writers and erasers across cell types suggests a diverse landscape of replicative epimutation in
scale and genomic distribution. Neurons and embryonic stem cells, with higher expression of
DNMT3s and TETs, exhibit broader active methylation maintenance, not limited to gene bodies
and enhancers. High TET expression in embryonic stem cells prevents methylation of bivalent
chromatin [59,61,198]. While over 80% PMDs are shared across cancer types [25], 26% of the
genome is reported to comprise cell-type-invariant PMDs, with the remainder serving as cell-
type discriminators [85]. Waki et al. observed that cancer-related genes became hypermethylated
in nonmalignant tissue aging, and such age-associated hypermethylations are tissue specific [62].
Consistent with the cell-type specificity in replicative hypermethylation, Polycomb targets vary
among specific tumors due to their occupation by transcription factors that activate these sites
and prevent hypermethylation [84]. Despite this evidence, fully delineating replicative epimutation
by cell and cancer type requires future study (see Outstanding questions).

Replicative epimutation as a contributing mechanism of epigenetic aging clocks
Epigenetic clocks, epitomized by the Horvath clock [86] and other clocks [44,87–89], have
successfully tracked aging and related phenotypes like multimorbidity and disability [90].
Contrary to viewing epimutations merely as aging markers, there is evidence that loss of epige-
netic information might be a reversible cause of aging [91]. Given the precision of epigenetic
clocks in predicting chronological age and age-related phenotypes, nonstochastic deviations
from predicted age indicate biological abnormalities, reflecting an older or younger epigenomic
state [92]. Such deviations are linked to age-related pathologies, including drinking and
smoking [93], obesity [94], cancer [95], cardiovascular disease [96], Down syndrome [97],
and caloric restriction [98].

While epigenetic clocks are effective predictive models, their mechanistic basis remains
unclear, aside from reflecting epigenetic changes during aging processes [99]. Several
hypotheses have been proposed to explain their accuracy in predicting chronological age
[100]. These mechanisms may involve age-related gene expression changes, shifts in cell
composition, and more. One intriguing hypothesis suggests that methylation clocks capture
the cumulative trend of cell division, a process linked to organismal aging and stem cell re-
newal [101,102] (Figure 4). The feasibility is evident in actively renewing cells and tissues
containing such cells.
6 Trends in Genetics, Month 2024, Vol. xx, No. xx
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Figure 4. Replicative methylation drift as a contributing mechanism of epigenetic aging clocks. Epigenetic aging
clocks capture chronological age by tracking the overall proliferation history in stem cells and their expansions in tissues that
contain proliferative cell types. Tissues with longer cumulative stem cell renewal are associated with more pronounced
replicative epimutation (showing hypomethylation, data source: [25])
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Multiple lines of evidence support this hypothesis. First, the methylation features selected by
several clock models colocalize to genomic regions occupied by replicative epimutations, such
as the Polycomb targets [100,103,104]. Second, epigenetic clocks track aging across all life
stages, including fetuses [105], pediatric populations [106,107], and the elderly [108]. This
resembles the lifelong renewal of some proliferative cell types, such as hematopoietic stem
cells [109]. Third, excessive cell replication is linked to epigenetic clock acceleration, evident in
cancer and immortalized cell cultures [96]. These systems show faster epigenetic clock ticking,
uncoupling from chronological age [86]. Caloric restriction reduces cell replication rates
[110] and delays age-related epimutation [98,104,111]. Both replicative epimutation and clock
methylation changes reset in reprogrammed iPSCs [112]. Certain DNA methylation changes
can detect adult stem cell dynamics [113].

Other evidence suggests that replicative epimutation is not the sole mechanism of epigenetic
aging clocks. Many age-related cellular processes are replication independent. In liver tissues
of obese subjects, accelerated aging is observed at CpGs linked to genes involved in oxidative
stress and energy metabolism [94], indicating that the clock might track disease-specific gene
expression changes. The interplay between gene-centric and replicative mechanisms in the
epigenetic clock might be hard to dissect cleanly. For example, while the Polycomb target
genes are intrinsically susceptible to replicative hypermethylation, they are also important genes
for development and thus may be epigenetically regulated. Thus, while epigenetic clocks capture
replicative epimutations, they also reflect other age-related processes.

Replicative epimutations confound the identification of epigenetic drivers
Establishing the causal role of DNAmethylation in cancers is complex. Global epigenetic changes
have been linked to causality in cell line and mouse experiments, which inhibited DNMT1 activity
[114], introduced hypomorphic mutations [201], and manipulated the expression levels of DNA
Trends in Genetics, Month 2024, Vol. xx, No. xx 7
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methylation writers [202]. However, in diseases, particularly proliferative disorders like cancers, dis-
cerning the causal effect of DNA methylation from passive events remains a significant challenge
(Figure 5). To conclude the causal role of DNA methylation in replicative diseases (Figure 5, right),
one must discriminate against correlative events (Figure 5, model M1, M2) that are either (i) replicative
epimutations, which are a direct outcome of cell divisions; (ii) epigenetic hitchhiking events –

methylation changes that predate cell division but got clonally amplified through linkage
with other driver events rather than conferring selective advantages by themselves [115]; or
(iii) direct passengers of the disease. The genomic distribution of the replicative epimutations
may be modeled to rule out the replicative origin of these methylation changes [116,117].

Functional consequences of replicative epimutations
Passenger methylation variation can create epigenetic mosaics as cells replicate, resulting in
heterogeneity among otherwise identical cells (Figure 5, model M3). This epigenetic mosaicism,
demonstrated in various cancers via single-cell methylome mapping [118,119], increases with
age and impacts cellular fitness. It contributes to stem cell function deficits, proinflammatory
responses, and elevated risks of malignant transformation.

Replicative epimutation at crucial developmental genes can impair stem cell differentiation [120] and
renewal capacities [121]. Replicative hypermethylation causes a lymphopoietic-to-myelopoietic shift
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Figure 5. Dissecting causal relationships of epimutations, mitosis, and diseases. The logic flows of causality amongmitosis, epimutation, and diseases, stratified
by epimutation being an outcome (passenger), an upstream cause (driver), or both, where epimutation arises from mitosis and contributes to disease onset and risk.
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in aging hematopoietic stem cells (HSCs) [120,122], mimicking the effects seenwith DNMT1deple-
tion [123]. Such hypermethylation also diminishes the repopulating ability of HSCs [121], leading to
transcriptional changes in older HSCs associatedwith inflammation and stress responses. Early life
DNA methylation differences influence epigenome and transcriptome aging [203–205]. Future
studies are needed to determine if replicative epimutation affects disease development through
this mechanism (see Outstanding questions).

Replicative epimutation can trigger inflammatory responses by activating endogenous retroviruses
(ERVs) and immune genes in late-replicating regions, leading to interferon responses and viral mimicry
[127–129]. In contrast, a recent prostate cancer study showed that this effect might also bemediated
by immunosurveillance gene activation due to DNA hypomethylation, which enhances repression by
histone modifications [130]. Increased methylation at certain gene promoters has also been linked to
inflammatory diseases in tissues such as the esophagus [131] and colon [132].

Replicative epimutation can disrupt gene regulation, thereby promoting cancer [133,134]. This
correlation is evident from the association between lifetime cancer risks and the number of stem
cell renewals [102,135,136]. Age-related clonal expansion of epigenetically mosaic stem cells is
observed in hematopoiesis [137], intestinal [138], and muscle tissues [119]. These mosaicisms
contribute to increased transcriptional heterogeneity [122]. Replicative epimutation at Polycomb
targets may lock cells in a proliferative state conducive to oncogenesis [56–58], for example, to
enhance self-renewal and inhibit differentiation of HSCs [139].

Lastly, replicative epimutation contributes to genome instability. Studies show that aging mobilizes
autonomous retroviruses, increasing mutagenic retrotransposition [129,206]. Additionally, DNA
methylation alters themutagenic potential of cytosine, with varyingCpG-to-TpG somatic mutations
at different replicative epimutation rates [25]. The interaction of these mechanisms with DNA repair
and their impact on genome integrity remain unresolved (see Outstanding questions).

Replication-independent epigenetic changes
It is worth noting that many epimutations are not coupled with cell/DNA replication. Like somatic
mutations [140], replication-independent processes contribute to DNA methylation alterations
observed in non-proliferating and proliferating cells. For example, the pancreatic beta cells, a
long-living endocrine cell type [141], were observed to have experienced age-dependent
demethylation of regulatory elements [124], leading to continuousmaturation of the beta cell func-
tional phenotypes [125]. DNA methylation [126,142] and demethylation [143] can be triggered by
age-related DNA repair, some of which are nonreplicative [144]. For example, DNA methylation
loss may occur due to nonreplicative DNA synthesis, such as those due to oxidative DNA damage
[145]. Barreto et al. showed that Gadd45a, a key gene in DNA damage-induced growth arrest,
promoted DNA demethylation at DNA damage sites, leading to gene activation [143]. Endicott
et al. showed that ambient oxidative stress expedited DNA hypomethylation [145]. When cells
enter replicative senescence, they acquire additional methylation changes at certain biosynthetic
and metabolic genes besides the replicative methylation changes [146,147].

The causal roles of epimutations on cancer-associated mitotic aging
The role of DNA methylation as a driver of mitosis has become increasingly evident in oncology,
where it serves as a proxy for studying cell proliferation (Figure 5, M4–6). Aberrant methylation
patterns associated with cancer, often rooted in early development, manifest across enhancers,
imprinted genes, CpG island promoters, and retrotransposons. Yet, the relevance of these
patterns to mitosis in non-cancerous contexts, including normal tissue development and overall
organismal aging, warrants comprehensive investigation.
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Impaired imprinting as a driver of cancer-associated mitotic aging
Imbalanced genomic imprinting is a well-establishedmechanism by which aberrant DNAmethylation
patterns lead to uncontrolled proliferation and cancer. Genomic imprinting is an epigenetic phe-
nomenon by which only one allele is expressed depending on whether it is inherited from the
mother or the father. In many cases, DNA methylation is responsible for silencing the relevant allele.
In certain pathologies such asBeckwith–Wiedemann syndrome, abnormal DNAmethylation in a clus-
ter of imprinted genes results in activation of oncogenes (IGF2) or repression of tumor suppressors
(CDKN1C). This results in various childhood tumors. Targeting demethylases to the CDKN1C/p57
locus induced proliferation in primary human pancreatic beta cells [148]. This epigenetic approach
indicates a direct link between the DNA methylation state of imprinting loci and cellular proliferation.

Tumor suppressor and oncogene dysregulation as drivers of cancer-associated mitotic aging
The disruption of tumor suppressor genes and oncogenes by methylation alterations, which can
result in oncogenesis and contribute to mitotic aging, is well-documented in oncology. The effects
of such methylation changes have been substantiated by demethylation experiments and applica-
tions of epigenetic editing technologies (Figure 6).

Demethylating agents such as 5′-aza-2′-deoxycytidine are cytosine analogs that generate a
covalent bond with DNMT1, thus inhibiting its activity and reducing global DNAmethylation levels
[149–151]. Demethylating agents effectively prevent microadenomas and reduce tumor size. The
FDA approved them for treating different leukemias and myelodysplastic syndrome [152,153].
For many years, the main mechanism by which demethylating agents affect tumorigenesis was
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Figure 6. Tools for testing causal epimutations on cell replication, showing demethylating agent, transgenic
animal models, cell line models, and CRIPSR dCas9-based epigenetic editing. Abbreviation; DNMT, DNA
methyltransferase.
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thought to be via reducing CpG island promoter methylation and activating tumor suppressor
genes. Reduced DNA methylation levels following demethylating agents were observed in CpG
islands residing in the promoters of tumor suppressors such as hMlh1 involved in DNA repair
[154–156], p14ARF participating in the cell cycle [157], and DAPK mediating apoptosis [158].
These genes undergo de novo methylation early during cancer progression, and they have a
low mutation burden, indicating that their silencing is epigenetic [159]. When cancerous cells
were treated with demethylating agents, the expression of various tumor suppressor genes
was restored, and tumor characteristics associated with the loss of expression of these genes
were diminished [156,158,160]. For example, when hMlh1 expression was restored in colorectal
and endometrial cells using demethylating agents, DNAmismatch repair capacity was regained in
these cells [156]. Since demethylating agents have genome-widemethylation effects, it is reason-
able that other genomic entities are activated in addition to tumor suppressor activation (see viral
mimicry effect below). Indeed, demethylating agents were shown to activate the SALL4 onco-
gene in MDS patients. SALL4 expression is associated with worse outcomes. The impact of
DNA methylation on SALL4 expression was further exemplified by epigenetic editing reducing
methylation levels at the promoter [161]. Hypermethylation of tumor suppressor genes could
stem from Dnmt3b overexpression in the aforementioned tumors [115] (Figure 5, models M4
and M5).

Epigenetic editing further supports these observations by targeting the TET catalytic domain to
demethylate a specific promoter and restore its activity. Indeed, when the TET1 catalytic domain
was recruited to the hMlh1 promoter, a 4000-fold elevation in Mlh1 expression was observed
[162]. This set of experiments provides solid proof for the role of CpG islands hypermethylation
in silencing tumor suppressor genes.

Hypomethylation-induced viral mimicry as a driver of cancer-associated mitotic aging
Cancer proliferation is not solely the result of conventional gene dysregulation but can also be
driven by the activity of nontraditional genes or transcripts, such as those from transposable
elements, best exemplified by endogenous retroviruses. For example, the use of demethylating
agents has been shown to inhibit the growth and self-renewal capabilities of colon-cancer-initiating
cells by inducing a viral mimicry pathway that specifically acts through the activation of MDA5/
MAVS/IRF7 pathway [127]. This pathway is activated as ERV elements are expressed following
hypomethylation, which generates dsRNA that induces an immunological response. The signifi-
cance of this pathway is not directly related to the CpG island methylator phenotype in cancers.
Additionally, the activation of retrotransposons has been linked to reduced DNA methylation levels
in promoter regions [127]. Notably, the likelihood of activation by demethylating agents is
influenced by the CpG density within the promoters of endogenous retroviruses [163], a principle
that likely extends beyond these elements to all promoters. Moreover, the hypomethylation of
transposable elements can also precipitate the activation of oncogenes in cancers [164].

Role of DNMTs and TETs in regulating replication in normal development and in cancer
Numerous studies have demonstrated the crucial role of TET and DNMT proteins in replicating
normal and cancer cells, with a particular focus on the neurons and hematopoietic lineages. For
instance, depletion of DNMT1 in HSCs leads to increased proliferation of myeloid progenitors
[123]. Studies have also shown that TET2 depletion alone can slowly activate malignancy, whereas
deletion of both TET2 and TET3 leads to rapid tumorigenesis in many models [165,166]. For
example, double knockout for TET2 and TET3 during T cell differentiation resulted in uncontrolled
proliferation of iNKT cells [167]. In addition, TET2 and TET3 deletion abrogated B cell differentiation
and induced myeloid tumorigenesis [166]. Importantly, the TET proteins have been shown to
induce tumorigenesis even without catalytic activity, which disconnects the tumorigenic behavior
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Outstanding questions
How do we distinguish driver and
passenger replicative epimutation from
cancer omics profiles?

Are replicative epimutation programmed
or stochastic in disease?

How does the replicative epimutation
rate vary by cell type, developmental
stage, and cancer type?

Could the accumulation of epimutations
in early life alter later development,
potentially leading to the early onset of
age-related diseases?

How does nonreplicative epimutation
track aging?

How does replicative epimutation
interact with DNA repair and impact
genome stability?

Towhat extent do replicative epimutation
and alternative mechanisms contribute
to aging clocks?

What is the contribution of animalmodels
to understanding the causal role of DNA
methylation on proliferation?

How do demethylating agents affect
proliferation and suppress and enhance
proliferation simultaneously?

How can epigenetic editing be used to
screen genes affecting cell proliferation?

Can epigenetic editing suppress and
enhance cell replication in healthy and
disease systems?
of TETmutants fromDNAmethylation dynamics [168]. Nevertheless, TET catalytic activity is essen-
tial in certain tumor models to induce tumorigenesis [168]. In cases where the lack of TET proteins
leads to cancer, a major factor leading to tumorigenesis is the lack of tissue-specific demethylation,
which results in attenuated chromatin accessibility at enhancer sequences [166,169].

Epigenetic editing for studying the causal role of DNA methylation on replication
Epigenetic editing utilizes genetic editing techniques such as CRISPR-Cas9 or TALEN to recruit
epigenetic modifiers to specific sites in the genome [170,171]. By disabling the nickase activity in
these tools, known as dead Cas9 or dCas9, the technique aims to recruit TET or DNMT catalytic
domains to target DNA sequences [170,171]. This approach has been successful in activating or
silencing genes [172]. Initially, a single catalytic domain was attached to each dCas9/TALEN. For
example, targeted imprinted genes in primary pancreatic beta cells led to the proliferation of beta
cells when transplanted in vivo [148]. Recently, scientists have fused multiple epigenetic writers
into each dCas9/TALEN for enhanced editing. Furthermore, integrating transcriptional activators
or repressors on top of using DNA methylation writers has significantly improved the modulation
of gene expression and the persistence of modified expression [173]. However, targeting tran-
scriptional activators/repressors without recruiting DNA methylation writers has reduced the
capacity to modulate and sustain the modified expression of target genes [173]. Epigenetic
editing approaches have also been used to silence most promoters in the genome using a
gRNA library [173]. This has helped measure the impact on the replication of tumor cell lines and
identified several genes that can successfully attenuate or accelerate cell proliferation [173]. Future
studies may identify if activating epigenetic editing can also screen for genes affecting cell prolifera-
tion. Furthermore, using epigenetic editing to silence or activate large pools of enhancer regions
using large gRNA libraries could advance our understanding of the importance of these regulatory
sequences in regulating cell replication. Lastly, recent studies have demonstrated efficient epigenetic
silencing in vivo [174]. Future studies will utilize this approach to suppress or enhance replication in
health and disease (see Outstanding questions).
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