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Abstract
Motivation: Infinium DNA methylation BeadChips are widely used for genome-wide DNA methylation profiling at the population scale. Recent 
updates to probe content and naming conventions in the EPIC version 2 (EPICv2) arrays have complicated integrating new data with previous 
Infinium array platforms, such as the MethylationEPIC (EPIC) and the HumanMethylation450 (HM450) BeadChip.
Results: We present mLiftOver, a user-friendly tool that harmonizes probe ID, methylation level, and signal intensity data across different 
Infinium platforms. It manages probe replicates, missing data imputation, and platform-specific bias for accurate data conversion. We validated 
the tool by applying HM450-based cancer classifiers to EPICv2 cancer data, achieving high accuracy. Additionally, we successfully integrated 
EPICv2 healthy tissue data with legacy HM450 data for tissue identity analysis and produced consistent copy number profiles in cancer cells.
Availability and implementation: mLiftOver is implemented R and available in the Bioconductor package SeSAMe (version 1.21.13þ): https:// 
bioconductor.org/packages/release/bioc/html/sesame.html. Analysis of EPIC and EPICv2 platform-specific bias and high-confidence mapping is 
available at https://github.com/zhou-lab/InfiniumAnnotationV1/raw/main/Anno/EPICv2/EPICv2ToEPIC_conversion.tsv.gz. The source code is 
available at https://github.com/zwdzwd/sesame/blob/devel/R/mLiftOver.R under the MIT license.

1 Introduction
The Infinium DNA methylation BeadChips (Illumina Inc., 
San Diego, CA, United States) (Bibikova et al. 2006) are 
widely used assay technologies for population-scale DNA 
methylation profiling, including meQTL studies (Min et al. 
2021, Hawe et al. 2022), epigenetic risk scoring (Aref-Eshghi 
et al. 2020, Thompson et al. 2022), and epigenome-wide as
sociation studies (EWAS) (Li et al. 2019, Battram et al. 
2022). Extensively employed in consortia projects, such as 
The Cancer Genome Atlas (TCGA), over 80 000 
HumanMethylation450 (HM450) samples (Maden et al. 
2021) and a comparable number of EPIC array methylation 
profiles have accumulated in the Gene Expression Omnibus 
(GEO). Compared to sequencing-based methods, Infinium 
arrays offer cost-effectiveness, high quantitative resolution 
(Zhou et al. 2019b), ease of use, and the ability to accommo
date a wide range of DNA inputs (Lee et al. 2024). Their high 
throughput capabilities have accelerated clinical applications 
in areas such as cancer diagnosis (Capper et al. 2018), liquid 
biopsies (Li et al. 2022), and forensic science (Mannens et al. 
2022). More recently, this technology has supported the crea
tion of an extensive pan-mammalian DNA methylome atlas 
(Arneson et al. 2022, Ding et al. 2023, Haghani et al. 2023).

The arrays’ probe naming system (i.e. “cg” number), be
ginning with the Infinium HumanMethylation27 BeadChip 
(HM27), has been a cornerstone for cross-referencing probes 

with unique CpG sites within the genome. Each cg number 
corresponds to a unique 122-mer sequence centered on the 
target cytosine-guanine dinucleotide (CpG site), with array 
probes designed against these sequences. Originally, the 
Infinium arrays featured a one-to-one design—one probe set 
per 122-mer sequence—enabling a mapping to the human ge
nome and facilitating cross-referencing 122-mer IDs, or cg 
numbers, with genomic CpG locations. While both the 122- 
mer and probe sequences are susceptible to nonunique map
ping, this referencing method is common in EWAS literature 
(Xiong et al. 2020, Min et al. 2021, Battram et al. 2022, 
Hawe et al. 2022) and has provided a convenient albeit im
perfect system (e.g. from HM27, HM450 to EPIC, cg 
number-based probes can be directly compared) for indexing 
probe sequences or CpG sites within a genome assembly.

The main limitation of the original cg number system arises 
from its non-specificity—a single cg number could corre
spond to multiple probe designs targeting the same 122-mer 
sequence. Additionally, this framework did not allow the in
clusion of multiple replicate probes (Bibikova et al. 2009), 
which would enhance the robustness of measurements. With 
the advent of newer Infinium array generations, like the EPIC 
version 2 (EPICv2) (Kaur et al. 2023, Noguera-Castells et al. 
2023) and other non-human arrays (Arneson et al. 2022, 
Zhou et al. 2022), a more precise naming system was intro
duced. This new system retains the cg number as a prefix but 
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adds additional information to distinguish between probes, 
accounting for Infinium chemistry, strand orientation, and 
replicate indices (Zhou et al. 2022). However, while method
ologically sound, introducing additional probe details can im
pede the integration of newly generated methylation data 
with legacy datasets using the antiquated probe nam
ing system.

Moreover, the static probe content selection in Infinium 
technology reflects the evolving understanding of methylation 
biology (Zhou et al. 2017). Each array generation—HM27, 
HM450, EPIC, and EPICv2—has refined probe content to 
represent better emerging biological insights, like gene body 
methylation (Yang et al. 2014) and cis-regulatory element 
methylation (Neiman et al. 2017). However, integrating leg
acy data generated on older platforms may introduce missing 
probes, which remains technically challenging, especially 
for applications like computing epigenetic clocks (Horvath 
2013) and cancer classification models (Capper et al. 2018), 
which require specific CpGs in a model. Although data impu
tation strategies can help fill missing values within samples, 
many methods, such as matrix factorization (Mazumder 
et al. 2010), cannot accommodate the complete missingness 
of a specific probe in the query dataset. How to continue 
leveraging the legacy data and predictive models on the 
ever-evolving Infinium platforms has become a pressing 
technical need.

To respond to this need, we introduce methylation 
LiftOver (mLiftOver), a tool designed to harmonize Infinium 
data efficiently across platforms, including the EPICv2 array. 
mLiftOver, handles probe ID conversion, replicate probe 
measurement resolution, and missing data imputation 
(Fig. 1A). It is compatible with the R/Bioconductor ecosystem 
and enables data conversion with varying stringency levels. 
We demonstrate its utility by applying it to public EPICv2 
datasets, showcasing its high performance and utility in 
bridging different Infinium platforms.

2 Materials and methods
mLiftOver, developed in R, is a feature in the SeSAMe pack
age (Zhou et al. 2018) and leverages the ExperimentHub 
(Pasolli et al. 2017) and the sesameData packages to organize 
empirical data for its operation (Fig. 1A). This tool can con
vert inputs of generic data types: Probe IDs as a string list, 
DNA methylation levels (beta values) as numerical matrices, 
and signal intensities as “SeSAMe::SigDF” objects. 
mLiftOver can also translate data to and from new and previ
ous Infinium platforms. The tool generically identifies repli
cate probes as those sharing the same cg number prefix but 
differing in other design aspects, such as strand specification 
and Infinium chemistry (Fig. 1B). When integrating data be
tween platforms with and without these suffixes, mLiftOver 
offers two data aggregation strategies: averaging beta values 
across replicates or selecting the replicate with the most sig
nificant signal detection, informed by detection P-values. The 
latter method can exclude probes with potential design issues, 
as indicated by the mask column within the “SigDF” object. 
When converting platforms without replicates to platforms 
with replicates, the same readings will be assigned to different 
replicates. mLiftOver is compatible with all existing Infinium 
platforms, including HM27, HM450, EPIC, EPICv2, and the 
Methylation Screening Array (MSA) (Goldberg et al. 2024). 
It also facilitates the conversion of raw signals stored as 

“SigDF” class objects, enabling integrated analyses such as 
copy number variation studies. Beyond signal conversion 
based on probe IDs, mLiftOver can incorporate empirical 
benchmarks from analyses where two platforms have pro
filed identical cell lines to filter platform-specific biases, thus 
enhancing data translation fidelity. We should note that 
mLiftOver does not address batch effects, so care should still 
be taken when designing and executing each experiment.

mLiftOver integrates publicly available datasets to facili
tate the back-conversion of EPICv2 data to its antecedent 
platforms, EPIC and HM450. This reverse conversion pro
cess involves three steps: (i) translating probe IDs, (ii) filtering 
platform-specific biases, and (iii) imputing missing data by 
mapping the sample using an empirical nearest neighbor ap
proach to samples within our comprehensive DNA methyl
ome repository. By aligning with the closest matching tissue 
type, mLiftOver fills in gaps without relying on methylation 
levels from other samples in the dataset, thereby enabling 
single-sample dataset operations. We have conducted exten
sive analyses on 10 631 EPIC and 10 726 HM450 samples to 
establish a robust imputation baseline when either EPIC or 
HM450 is the target platform (Supplementary Table S1). 
This baseline collection of datasets spans 20 and 19 tissue 
types for HM450 and EPIC datasets, respectively, with blood 
as a focal tissue due to its prevalence in EWAS studies 
(Supplementary Fig. S1A). Additionally, we calculated the 
variance of beta values for each CpG site within the target tis
sue type to gauge the confidence of imputation for probes 
completely absent from the original array. Supplementary 
Figure S1A shows the standard deviation distribution by tis
sue type and assay platforms. These variance metrics are criti
cal as they can serve as filters to eliminate methylation 
influences stemming from unaccounted variables, such as 
age. The imputation reference data is housed within the 
sesameData package, accessible via the “sesameDataGet” 
function. When mLiftOver detects missing data, it substitutes 
these gaps with the median methylation value for the respec
tive tissue type. This tissue type is either deduced algorithmi
cally or specified by the user, ensuring the replaced values 
align with the most probable biological context.

3 Results
To show the performance of mLiftOver, we benchmarked the 
accuracy of converted probe-level methylation readings using 
the EPIC and EPICv2 data profiling the same cell lines 
(GM12878, K562, and LNCaP) (Kaur et al. 2023). We first 
compared native EPIC data and converted data from EPICv2, 
then native EPICv2 data and harmonized data from EPIC, all 
profiling the same cell line (GM12878 or HCT116) (Fig. 1C). 
Conversions in both directions highly correlate with the na
tive measurements from the target platform (Spearman ρ ¼
0.988) (Fig. 1C, first panel; Supplementary Fig. S1C). EPIC 
to EPICv2 conversion yields more probes due to the replicate 
probes with the same cg number prefix in EPICv2. Next, 
compared to native EPIC data, both replicate probe aggrega
tion methods yielded similarly high measurement accuracy 
on 3481 probes with design replicates in EPICv2, with the 
methylation level averaging method slightly surpassing the 
detection P-value method (Fig. 1C, second panel; 
Supplementary Fig. S1D). For EPICv2 to EPIC conversion, 
we further considered data imputation. The imputed values 
alone also highly correlated with the native EPIC data 
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(Spearman ρ ¼ 0.82), albeit lower than in the probe sets of 
direct probe conversion (Supplementary Fig. S1E), but higher 
than alternative imputation strategies based on genomic 
neighbors (Supplementary Fig. S1F and G). The Spearman’s 
correlation remains at 0.977 for converted measurements 
and imputed values combined (Supplementary Fig. S1H). 
Filtering out 86 678 probes with higher methylation variation 
(SD>0.08) in the public datasets reduces the number of im
puted readings but brings the overall correlation to 0.91 
(Fig. 1C, third panel). Lastly, we tested the filtering of 
platform-specific biases (Fig. 1D). We first examined five ex
periment pairs on three cell lines (GM12878, K562, and 
LNCaP). We defined a set of high-confidence mapping as those 
with methylation levels whose differences were no greater than 
0.05 in four experiment pairs (see “Data Availability”). This 
yielded a mapping of 542 491 EPICv2 probes with 539 513 
EPIC probes. mLiftOver then uses this mapping to convert un
paired EPIC and EPICv2 experiments on the HCT116 cell lines 
grown from different labs (Kaur et al. 2023). The conversion 
with the empirical filter yielded a slightly higher correlation 
(0.898 versus 0.784) with the native data than without filter
ing platform-specific bias (Fig. 1D).

To demonstrate the utility of mLiftOver in integrating 
Infinium data across multiple platforms (example function 
calls in Supplementary Fig. S2A), we applied it to integrate 
EPICv2 and HM450 data that profiled primary healthy 
tissue samples. We downloaded two healthy endometrium 
tissue methylomes and seven lung tissue methylomes 
(Noguera-Castells et al. 2023). We co-clustered the 

mLiftOver-converted methylomes with HM450 datasets of 
tumor-adjacent normal tissues from TCGA. As shown in  
Fig. 1E, the EPICv2-originated datasets correctly cluster with 
the corresponding lung and endometrium tissue samples. 
This suggests that mLiftOver faithfully maintained these bio
logical samples’ epigenetic identities.

Next, we evaluated whether predictive models trained on 
HM450 data can be used on mLiftOver-harmonized methyl
omes. We downloaded 22 primary tissue methylomes of the 
lung, breast cancer, and leukemia for cancer classification 
(Noguera-Castells et al. 2023). We applied a random forest 
classifier trained on 33 TCGA cancer types (Fig. 1F). The 
HM450-based classifier accurately predicts the cancer types 
of these methylomes except one, leading to an accuracy of 
95%. We further evaluated the robustness of Horvath clock 
age (Horvath 2013) prediction by the degree of missing data 
imputation. As expected, data missingness is associated with 
loss of clock accuracy (Fig. 1G). Imputing 20 of 353 features 
led to a deviation of 1.71 years (Supplementary Fig. S2B).

Lastly, we tested the functionality of mLiftOver in convert
ing signal intensities. Infinium array signal intensities are ex
tensively used in discovering copy number aberrations. We 
benchmarked this functionality on EPIC and EPICv2 datasets 
profiling the K562 cell lines, a leukemia cell line associated 
with a characteristic copy number gain at chromosome 22 
and loss of chromosome 9p (Zhou et al. 2019a). As expected, 
mLiftOver can produce consistent copy number profiles from 
EPICv1 native and EPICv2-harmonized data, capturing this 
hallmark structural variation (Fig. 1H).

Figure 1. mLiftOver harmonizes Infinium DNA methylation BeadChip data across array platforms. (A) Schematic illustration of the core features and 
workflow of mLiftOver from data input to harmonized output. (B) Depiction of the probe naming convention employed in the EPICv2 and MSA arrays. 
(C) The accuracy of mLiftOver was evaluated using the GM12878 cell line data, contrasting measurements from EPICv1 and EPICv2. The panel is divided 
into three sub-panels, demonstrating (i) direct probe ID translation, (ii) signal averaging across replicates, and (iii) imputation of missing probe readings 
(excluding those with methylation level standard deviation >0.08). Spearman’s correlation coefficients are displayed atop each subpanel, with all 
correlations being significant (P-value <1E-6). (D) Removal of platform-specific biases (tested on a pair of HCT116 cell line data that did not participate in 
the platform-specific bias analysis), P-value <1E-6. (E) Illustrates the integration process of mLiftOver for primary healthy tissue data and TCGA tumor- 
adjacent normal tissue data, showcasing its utility in harmonizing diverse datasets for tissue classification. (F) Demonstrates the application of cancer 
classification models, initially trained on HM450 data using a random forest framework, to primary tumor datasets harmonized from EPICv2 data through 
mLiftOver. (G) Plot relating the number of missing probes and prediction error of Horvath’s pan-tissue clock, stratified by sex. (H) Compares copy number 
variation profiles obtained from native EPIC data and profiles harmonized from EPICv2 data, showing the consistency of mLiftOver in signal 
data conversion.
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Collectively, we demonstrate that mLiftOver enabled the 
integration of recent Infinium data with legacy data and 
allowed for legacy predictive models to be continuously used 
on data from updated platforms.

4 Discussion
The Infinium DNA methylation BeadChip has evolved signif
icantly since its inception, progressing from the HM450 to 
the EPIC and EPICv2 array. While later versions often pre
serve a substantial portion of probes from a previous version, 
challenges persist in predictive modeling or longitudinal stud
ies, where comparative analyses with historical data and 
models require identical probe IDs. This study introduces a 
user-friendly tool to streamline data harmonization across 
three dimensions: probe names, β values (methylation levels), 
and signal intensities.

The direction of platform harmonization (e.g. HM450 to 
EPIC or EPIC to HM450) should be guided by the analysis 
goal(s), such as the need for certain probe readings by a pre
diction model or the error tolerance level. Additionally, one 
should prioritize minimizing data imputation operations 
based on cohort composition [e.g. platform(s) used] and the 
number of platform-specific probes between the two plat
forms (see Supplementary Fig. S2C for probe overlap be
tween existing platforms).

The necessity for imputing missing probe readings has 
arisen with the introduction of new probes and the removal 
of others in the newer platform iterations. Our tool, 
mLiftOver, addresses this need by harnessing publicly avail
able data, primarily focusing on tissue-specific differences, 
which have been identified as principal influencers of DNA 
methylation patterns in various studies, including our own 
(Zhou et al. 2022, Ding et al. 2023). However, we acknowl
edge that other factors, such as age, sex, cellular malignancy, 
and mitotic history, have not been incorporated into our 
model. Moreover, our approach only supports target plat
forms with enough available data, and tissues with uncharac
terized methylomes are absent from our reference database, 
posing a potential limitation. One possible solution is to uti
lize the methylation correlation structure, for instance, infer
ring methylation levels in genomic proximity, to aid in 
imputing missing data. This approach could exploit co- 
methylated regions identified in comprehensive genome-wide 
methylome analyses (Sofer et al. 2013). The feasibility of im
putation could inform the design of future Infinium arrays. It 
is important to note that while DNA methylation levels can 
be imputed, the imputation of signal intensities for absent 
probes is not yet supported, potentially impacting the analy
sis of copy number alterations in converted versus native 
datasets. Nonetheless, mLiftOver addresses the problem of 
probes missing completely between array platforms by utiliz
ing a large database of publicly available DNA methylation 
array data across multiple tissues and leveraging the variabil
ity in methylation levels to assess the imputation accuracy. 
Our imputation solution for entirely missing probe values 
can be helpful for predictive models requiring specific probe 
values, where the alternative would be a missing value. In 
sum, mLiftOver provides user-friendly functionality for proj
ects seeking to analyze DNA methylation data using different 
versions of Infinium arrays.
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