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SUMMARY
We evaluated ancestry effects on mutation rates, DNA methylation, and mRNA and miRNA expression
among 10,678 patients across 33 cancer types fromTheCancer GenomeAtlas.We demonstrated that cancer
subtypes and ancestry-related technical artifacts are important confounders that have been insufficiently ac-
counted for. Once accounted for, ancestry-associated differences spanned all molecular features and hun-
Significance

We conducted a comprehensive analysis of the molecular effects of ancestry across cancer or normal tissues. We found
that, though many ancestry effects were shared by normal tissues, they were profoundly tissue specific, suggesting
ancestry effects must be considered primarily on a per-tissue basis both among cancers and non-cancer tissues. In tis-
sue-specific analyses of normal tissue especially, more samples from diverse ancestries are required for comprehensive
ancestry analyses, and we identified important controls for confounders and artifacts that need to be applied in such
studies. In particular, differences between African, European, and East Asian groups in renal and bladder cancers suggest
that ancestry should be taken into account when considering routes to disease and response to immunotherapies.
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dreds of genes. Biologically significant differences were usually tissue specific but not specific to cancer.
However, admixture and pathway analyses suggested some of these differences are causally related to can-
cer. Specific findings included increased FBXW7 mutations in patients of African origin, decreased VHL and
PBRM1mutations in renal cancer patients of African origin, and decreased immune activity in bladder cancer
patients of East Asian origin.
INTRODUCTION

People of different ancestries exhibit varying germline genetics

(Rosenberg et al., 2002; Price et al., 2006) and tend to encounter

different exposures, resulting in varying cancer incidence,

outcome (Freedman et al., 2006; Yang et al., 2011), and molec-

ular characteristics (Shigematsu et al., 2005). However, a

comprehensive accounting of ancestry-associated differences

in molecular features has not been performed across cancers

or even non-neoplastic tissues. Moreover, analyses of ancestry

associations rarely account for varying prevalence of cancer

subtypes across ancestries (Sanchez-Vega et al., 2018; Yuan

et al., 2018), which can obscure differences within subtypes.

The Cancer Genome Atlas (TCGA) is the largest and most

comprehensive multi-omics oncology cohort (Hutter and Zen-

klusen, 2018), rendering possible the simultaneous assessment

of ancestry associations in mRNA and miRNA expression and

DNAmethylation andmutation across 33 cancer types. Such an-

alyses can improve our understanding of molecular and cellular

effects of ancestry in at least four ways: first, by detecting novel

ancestry-associated molecular features and cancer types; sec-

ond, by determining whether ancestry effects are cancer- or tis-

sue-type specific, or common across types; third, by increasing

power to detect the common effects, using combined data

across cancer types; and fourth, by integrating cross-platform

analyses. The wealth of molecular data also enable accurate

cancer subtype classification (Sanchez-Vega et al., 2018),

enabling precise accounting of cancer subtype-ancestry

associations.

We sought to exploit these advantages to improve our under-

standing of the molecular and cellular effects of ancestry across

tissue and cancer types.

RESULTS

Determination of Genetic Ancestry
We determined the ancestry of each TCGA patient using five in-

dependent classification methods, each employing SNP array

and/or exome sequencing data (Figure 1A). Among 9,257 pa-

tients for whom at least three of the methods provided calls,

9,090 (98.1%) exhibited complete agreement, and 99.7% of

non-admixed patients exhibited concordance with prior

ancestry assignments (Yuan et al., 2018). Discordant calls

were primarily differences in the relative degree of ancestry as-

signments in admixed patients.

The final data spanned 10,678 individuals of primarily Euro-

pean (EUR; n = 8,836), East Asian (EAS; n = 669), African (AFR;

n = 651), Native/Latin American (n = 41), South Asian (n = 27),

or at least 20% admixed (n = 454) descent (Figure 1B; Table

S1) and 33 cancer types, of which 13 were divided into pre-

defined subtypes. In several cases, ancestries were associated
640 Cancer Cell 37, 639–654, May 11, 2020
with different subtypes (Figure 1C). Admixed individuals were

further distinguished by their primary ancestries: African-Ad-

mixed (n = 343), European-Admixed (n = 68), South Asian-Ad-

mixed (n = 24), East Asian-Admixed (n = 7), and Undetermined

(n = 12).

We also determined local ancestry across 70,748 genomic loci

in all samples. These local calls appeared to be accurate: for

example, the summed local ancestry calls were nearly identical

with our estimated global ancestry (Pearson’s r > 0.99). Among

the 1,076 samples with only EUR and at least 10%AFR ancestry,

we also evaluated whether individual loci were enriched for AFR

or EUR ancestry relative to their genome-wide levels of admix-

ture. No single locus reached statistically significant levels of

enrichment after controlling for multiple hypotheses (Figure 1D;

Table S1).

Next, we explored associations between ancestry and mo-

lecular data. For each data type (somatic alterations, methyl-

ation, mRNA and miRNA expression, and cross-platform

data), we performed pan-cancer and tissue-specific multivar-

iate regression analyses controlling for cancer type and sub-

type (Figure 1C; STAR Methods). Because most samples

were EUR, we used them as a reference to which we compared

EAS or AFR data.

The sample size provided substantial statistical power. In

pan-cancer analyses, we had greater than 90%power to detect

ancestry-associated somatic alterations of at least 10% preva-

lence and an odds ratio (OR) greater than two in the AFR-EUR

comparison (controlling for cancer type as a confounder; Fig-

ure S1A) and in both AFR and EAS analyses to detect methyl-

ation differences that exceed the standard deviation in the

data (0.2; Figure S1B) or Z score differences in population

means of at least 0.15 in mRNA and miRNA expression (Fig-

ure S1C). Tissue-specific analyses had lower power

(Figure S1B).

Somatic Alterations Associated with Ancestry
With respect to the overall burden of somatic alteration, we

initially observed significant correlations between AFR and

aneuploidy (p = 0.004) and EAS with tumor mutation burden

(TMB; p = 0.02) in pan-cancer analyses. However, controlling

for cancer subtype eliminated both correlations (Figures

S2A–S2D).

We then evaluated somatic mutation (single-nucleotide

variant/indel) and copy-number alteration (SCNA) frequencies

at the gene level. In the pan-cancer analysis, we initially identified

significant differences in three genes in AFR individuals, and one

gene in EAS, relative to EUR (Figures 2A, S2E, and S2F). Two of

these in the AFR-EUR comparison have been described (Yuan

et al., 2018): enriched mutations of TP53 in AFR samples and

of PIK3CA in EUR samples. We also observed enriched

CCND1 amplification in EAS samples and FBXW7 mutation in
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Figure 1. TCGA Donor Ancestries

(A) Ancestries were called as the consensus between five independent methods based upon SNP array and/or whole-exome sequencing.

(B) Ancestry representation in each disease type (upper plot), aggregate fractions of each ancestry among admixed individuals (middle panel), and cancer types

with at least 10 individuals of the indicated ancestries (black dots; lower panel).

(C) Ancestry representation across tumor subtypes with non-random ancestry distributions.

(D) Example local ancestry calls (top) and summary enrichment scores for AFR or EUR ancestry (vertical axis), plotted against genomic location (horizontal axis).

See also Figure S1 and Table S1.
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AFR samples. However, after subtype correction, only the

FBXW7 finding remained significant (FDR q = 0.07), highlighting

how variations in cancer subtype frequencies can confound

ancestry associations. Pan-cancer analyses restricted to cancer

typeswith at least ten samples in each ancestry produced similar

results, though fewer were statistically significant (Figure S2G).

Three additional datasets supported the association between

FBXW7 mutations and AFR ancestry. First, international Cancer

Genome Consortium Pan-Cancer Analysis of Whole Genomes

(ICGC PCAWG) data (excluding TCGA samples) and MSK-
IMPACT data, which primarily included EUR samples (PCAWG

also included many EAS samples) exhibited few FBXW7 muta-

tions (20/1,225 = 1.6% in PCAWG and 360/10,336 = 3.5% in

MSK-IMPACT) relative to the 6.7% mutation rate we had

observed in AFR samples. This supports but does not formally

validate the FBXW7-AFR association. However, an independent

FoundationMedicine (FMI) cohort of 72,339 tumors from 12 can-

cer types (Table S2) also exhibited more frequent FBXW7muta-

tions in AFR relative to EUR samples (Fisher’s exact p = 0.01),

and specifically in HNSC (16/144 AFR and 117/2,268 EUR
Cancer Cell 37, 639–654, May 11, 2020 641
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(B) Cancer-specific mutation frequencies in EUR and either AFR (VHL and PBRM1; KIRC) or EAS (HRAS and NFE2L2; BLCA and ESCA, respectively) TCGA

cohorts. p values represent analyses controlled for cancer subtype. Stars represent genes that validated in external cohorts.
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samples, p = 0.007) and UCEC (116/730 AFR and 520/4,333

EUR samples, p = 0.005).

Within cancer types, we observed four genes with differential

mutation rates, with two in a single cancer type: kidney clear-

cell carcinomas (KIRCs), in which AFR samples lacked VHL

and PBRM1 mutations (OR 0.37 and 0.25, respectively; FDR

q = 0.06 and 0.04). EAS bladder and esophageal cancers

were enriched in HRAS (OR = 6.6; q = 0.03) and NFE2L2

(OR = 11.6, q = 0.07) mutations, respectively (Figure 2B; Table

S2). The finding that only pan-cancer analyses identified differ-

ential mutation rates in FBXW7 indicates that these differences

spanned more than one cancer type. However, the finding that

most ancestry associations were identified only in individual

cancer types, despite smaller sample numbers and less power,

suggests that these ancestry effects tend to be cancer-type

specific.

We validated the associations between VHL, PBRM1, HRAS,

and NFE2L2 mutations and ancestry in external cohorts. We

observed fewer VHL and PBRM1 mutations among AFR KIRC
642 Cancer Cell 37, 639–654, May 11, 2020
samples in the FMI cohort (OR = 0.20 and 0.44, respectively;

p < 0.01 in each case; Table S2). An independent study (Peña-

Llopis et al., 2012; Krishnan et al. 2016) also found significantly

more VHLmutations in EUR (101/125) than in AFR KIRC samples

(4/10; p = 0.008). In this cohort, fewer PBRM1 mutations were

also detected in AFR (4/10) than in EUR (62/125) samples, but

the association was not significant, possibly due to the small

number of AFR samples. We observed enrichment of HRASmu-

tations in EAS (5/89) relative to EUR (64/2,482) bladder cancers

in the FMI cohort and in two additional datasets (Nassar et al.,

2019;Wu et al., 2019), where 22/448 EUR and 7/69 EAS samples

carried thosemutations. Neither of these cohorts reached statis-

tical significance on its own, but the combined data did (Fisher’s

exact p = 0.004). For NFE2L2 in ESCA, a study from East Asia

(Chang et al., 2017) reported 7/94 samples with mutations—a

similar rate to the 5/117 EUR samples with the mutation in

TCGA. Although prior studies suggested that NFE2L2mutations

are enriched in EAS esophageal squamous cell carcinoma (Deng

et al., 2017), we conclude that we could not validate NFE2L2.
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We also validated the VHL and PBRM associations in KIRC

patients with admixed AFR and EUR ancestry. We hypothesized

that thesemutations would be observed at rates that are propor-

tional to the fraction of the genome with EUR ancestry. This was

indeed the case for VHL in both TCGA and FMI cohorts (Wil-

coxon p = 0.02 and p < 0.001, respectively; Figures 2C and

2D) and for PBRM1 in TCGA (p = 0.007).

We next looked for evidence that germline genetics at the

FBXW7, VHL, and PBRM1 loci contribute to cancer formation.

To that end, we asked whether any of these loci were locally en-

riched for AFR or EUR ancestry among samples with at least

10% AFR ancestry, after controlling for global EUR and AFR

ancestry rates (Figure 1D). In each case, the ancestry with the

higher mutation rate was enriched at the gene locus: AFR

ancestry at FBXW7 (OR = 1.001) and EUR ancestry at VHL

(OR = 1.822) and PBRM1 (OR = 1.221). However, none was sta-

tistically significant. We conclude that the germline features at

these loci may not be associated with cancer.

To assess the contribution of environmental exposures to dif-

ferences in mutation frequency between ancestries, we

compared 57 mutational signatures between AFR or EAS sam-

ples and EUR samples (Alexandrov et al. 2020). These signa-

tures, derived frommutational patterns across trinucleotide con-

texts, often reflect mutagen exposure. We did not observe

significant differences in the AFR-EUR pan-cancer comparison,

suggesting thatmutagen exposures were notmajor confounders

in the differences in FBXW7, VHL, or PBRM1mutation rates. We

did find six signature associations (Table S2) in the EAS-EUR

pan-cancer analysis. Two signatures frequently observed in liver

cancer (signatures 16 and 24), signature 9 (related to AID activ-

ity), and signature 26 (related to defective mismatch repair)

were enriched in EAS samples, and two signatures related to

APOBEC activity (signatures 2 and 13) were enriched in EUR

samples. We observed no significant differences in signatures

between EAS and EUR BLCA samples, however, suggesting

that mutagen exposures were not major confounders in the dif-

ference inHRASmutation rates between these samples. Howev-

er, other exposures might still shape mutation rates across

ancestries.

We also tested the association of ancestry with chromosome

arm-level SCNAs. We observed no such associations in the pan-

cancer analysis but found two in cancer-type-specific analyses.

First, 3p loss, encompassing both VHL and PBRM1, was more

frequent in EUR than in AFR KIRC samples (q = 0.02; Figure 2E).

This, along with our prior finding that VHL and PBRM1mutations

are enriched in EUR KIRC samples, indicates that these genes

are biallelically inactivated more often in EUR KIRC samples.

Prior work noted the disparity in VHL mutations, but not loss of

chromosome 3p, between TCGA AFR and EUR KIRC samples

(Krishnan et al., 2016). We also found that chromosome 4q

loss was more frequent in AFR than in EUR COAD samples.

Pan-Cancer Analysis Uncovers Regions of Ancestry-
Differential DNA Methylation
In the pan-cancer analysis, we found statistically significant (F-

test, p < 0.05) differences in methylation between ancestries in

94,012 of the 482,421 HM450 array CpG sites, comprising

19% of all tested probes (Figure S3A). More ancestry associa-

tionswere identified in this pan-cancer analysis than in any single
cancer type. However, these associations tended to have small

effect sizes, predominantly below a change of 0.1 (Figures S3B

and S3C), and are therefore unlikely to be biologically significant.

We conclude that many of these findings result from the statisti-

cal power of our large dataset, rather than representing substan-

tive differences between ancestries.

When restricting to differences that are both significant and

large enough to be biologically meaningful (methylation change

> = 0.1), we found that very little of the cancer genomewas differ-

entially methylated across ancestries. In pan-cancer analyses,

we initially identified only 3,001 (0.6%) such CpGs. Moreover,

75% of these are likely due to artifact (Figure 3A) caused by

SNPs in the five bases at the 30 end of the DNA methylation

probes (Zhou et al., 2017). Only 4.2% of non-ancestry-associ-

ated CpGs were associated with such SNPs, and this artifact

was not overrepresented in probes that exhibit tumor-type-

associated methylation differences (Figure S3D). Probes subject

to other types of technical artifact were only slightly enriched in

ancestry-differential CpGs (Figure S3E). After removing these

problematic probes, only 374 CpG sites exhibited significant

ancestry associations. These results highlight the importance

of controlling for artifacts related to germline variants when

comparing methylation data across ancestries.

Similar to somatic genetic alterations, we observed more

significant and potentially biologically meaningful methylation

changes in cancer-type-specific analyses than in pan-cancer

analyses, despite the decreased power in the former. Across

the six cancer types we analyzed, an average of 3,116 sites

exhibited ancestry associations (range 474–12,176), eight

times the number in the pan-cancer analysis. However,

when we performed the same analysis on the 65 ‘‘rs’’ probes

on the array that interrogates SNP variants and would there-

fore often differ between ancestries, we detected significant

differences for 63 probes in the pan-cancer analysis and

only 43 probes on average in cancer-specific analyses,

consistent with the greater power in pan-cancer analyses

(Figure S3F).

As might be expected, sites that were significant in pan-can-

cer analyses exhibited similar ancestry associations inmost can-

cer-specific analyses (Figure 3B), but most significant sites in

cancer-type-specific analyses did not. Some differences might

be caused by residual subtype heterogeneity. For instance,

when we did not distinguish BLCA luminal and basal subtypes,

we detected considerably more ancestry-differential sites

(36,926 rather than 16,716), highlighting the need to account

for cancer subtype.

Although the methylation differences were largely tissue spe-

cific (Figure S3G), they appeared to be remarkably consistent

across cells within those tissues. Ancestry associations could

reflect mixed populations of cells with different methylation pat-

terns, whose composition varies by ancestry, or different methyl-

ation signatures within each population. Among the 374 pan-

cancer ancestry-differential CpG sites, 204 exhibited multimodal

distributions inmethylation signal (p < 0.05, Hartigan’s unimodal-

ity test; four exemplary cases are shown in Figure S3H), likely

representing biallelic lack of methylation, monoallelic methyl-

ation, and biallelic methylation. Mixed populations of cells with

different signatures would tend to fill in the three modes, making

them more uniform.
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Figure 3. Ancestry-Differential DNA Methylation

(A) Number of positive control 65 rs probes (‘‘Explicit SNPs’’), probes with measurements directly influenced by SNPs (‘‘SNP masked,’’ excluded from later

analyses), and all other probes (‘‘Not Masked’’), among probes found to be significant (p < 0.05) or non-significant in ancestry testing.

(B) (Left) Regression coefficients between AFR and EUR samples, pan-cancer and in six cancer types. (Right) The statistical significance of these differences.

(C) Concordant ancestry bias across probes (dots) for the same genes. Genes with at least four ancestry-differential probes are colored.

(D) Ancestry bias (vertical axis), computed as the slope (beta) in the regression model, across ancestries in example genes.

(E) Methylation at the SPATC1L promoter (cg12016809 beta value, horizontal axis) is associated with reduced gene expression (vertical axis). Beta value dis-

tributions are shown as smoothed density plots above scatterplots.

(F) Ancestry-associated differentially methylated regions (A-DMRs) detected in 149 whole-genome bisulfite sequenced samples. The PM20D1 promoter and

HOOK2 gene body enhancer loci in (C) and (D) are shown.

(G) Isolated probes can also be part of A-DMRs. (Top) Probe cg08477332, between S100A14 and S100A13, displays preferential lack of methylation in AFR

samples. (Bottom) At least six contiguous CpGs neighboring cg08477332 display concordant methylation, a potential A-DMR.

See also Figures S3 and S4 and Table S3.
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We considered genes associated with multiple ancestry-dif-

ferential methylation sites to have the greatest support for

ancestry effects (Figure 3C). Forty-one genes were supported

by at least two probes, and ten genes were supported by at least

four (Table S3). These ten include known methylation quantita-

tive trait loci (meQTLs) such as SPATC1L (Heyn et al., 2013)

and PM20D1 (Sanchez-Mut et al., 2018); genes previously

recognized as variably methylated such as HOOK2 (Kraus

et al., 2015); and genes for which variation in methylation has

not been described, such as FLJ26850, PACS2, and FAAP20

(Figure 3D). Among nine of these ten genes, all associated

probes exhibited similar ancestry effects. For example, all four

FAAP20 sites were more frequently methylated in AFR samples,

while all four HOOK2 sites were less frequently methylated in

those samples.
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The top gene, SPATC1L, uniquely exhibited opposite ancestry

associations across its associated probes (Figure 3B). These are

related to different functional elements, comprising probes that

cluster at either the gene’s promoter or its transcription termina-

tion site (TTS) (Figures 3C and 3D). Prior reports also described

coordinated differences in methylation at the promoter and TSS

sites across haplotypes (Heyn et al., 2013). Promoter methyl-

ation of SPATC1L (shown by cg12016809) was negatively asso-

ciated with SPARC1L mRNA levels in four ancestry groups (Fig-

ure 3E), suggesting an impact on gene transcription, with more

methylation and less expression in AFR samples.

The observation that multiple neighboring loci show coordi-

nated DNA methylation patterns suggests that their ancestry-

related differences were not due to technical artifact. We at-

tempted to further validate the 374 ancestry-differential sites
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from the pan-cancer analysis in two independent datasets that

assayed 149 non-neoplastic hematopoietic samples (Stunnen-

berg et al., 2016) and 49 TCGA samples (40 tumors and 9 nor-

mals) (Zhou et al., 2018a) using the orthogonal technology of

whole-genome bisulfite sequencing (WGBS). Among the 374

sites, 343 were also probed in the TCGA WGBS dataset, and

all exhibited differential methylation. Over 80% (277 sites) had

at least one neighboring CpG with highly correlated methylation

(Spearman’s rho > 0.7), and over 40% had more than 10 such

neighboring CpGs (Figure S3I). Among the 149 hematopoietic

samples, the regional differences in ancestry that we had

observed in TCGA cancers again appeared as components of

larger variably methylated regions (VMRs, consistent with

ancestry-associated differentially methylated regions, A-DMRs)

that encompassed multiple concordantly methylated CpGs (Fig-

ure 3F). Although we focused on regions supported by at least

two probes, many loci with only one differentially methylated

probe show similar patterns in the WGBS validation data, such

as S100A14 (Figure 3G). These findings indicate that many

ancestry-associated methylation differences reflect regional

chromatin states and that ancestry-associated methylation ef-

fects in cancers often reflect similar patterns in normal tissue.

We queried four additional datasets to validate the ancestry

associations we had detected in TCGA, all representing non-

neoplastic tissue. Two represented individuals of AFR, EUR,

and EAS ancestry, similar to TCGA: one of whole blood (Heyn

et al., 2013; GSE36369) and the other of brain tissue (Guintivano

et al., 2013; GSE41826). Two represented ancestries not well

covered in TCGA: one of umbilical cord blood in three EAS pop-

ulations (Teh et al., 2014; GSE53816) and another of lymphoblas-

toid cell lines from five populations of more specific ancestry,

such as Mozabites and Cambodians (Carja et al., 2017;

GSE101431) (Figures S4A–S4D). We found that 80% and 60%

of the ancestry-differential CpG sites in TCGA validated in the

whole-blood and brain tissue data, respectively (Figures S4A

and S4B, group ‘‘++’’), with substantially lower rates of signifi-

cant ancestry differences for random sites without ancestry as-

sociations in TCGA data (Figures S4A and S4B, group ‘‘�’’).

We observed lower validation rates in the two datasets that differ

from TCGA in ancestry composition, as expected: 40% and 8%,

respectively (Figures S4C and S4D), but still significantly higher

than in randomly selected CpGs. Further validating these

ancestry-specific differences, we found strong positive correla-

tions between the magnitudes of methylation preferences in

the validation datasets and TCGA (Figures S4E–S4H). We

conclude that most of the ancestry-specific methylation differ-

ences we identified can be validated. The fact that the validation

sets were mostly disease-free tissues also suggests that most of

the differences apply to healthy tissue as well as to cancer.

mRNA Associations with Genetic Ancestry
In pan-cancer analyses correcting for batch, tissue type, and

subtype, we found significant mRNA expression differences be-
(D) Effect sizes (as regression coefficients) from TCGA (horizontal axis) and GT

analyses. p-value: Pearson’s correlation.

(E and F) Median levels per tumor type of the ancestry-associated genes (E)GSTM

colors indicate ancestry.

See also Figure S5 and Table S4.
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tween AFR and EUR samples for 327 genes and between EAS

and EUR samples for 654 genes (Figures 4A and 4B; Table

S4). These two lists had 85 genes in common, including 35

with higher expression in EUR samples, 31with lower expression

in EUR samples, and 19 for which expression in EUR samples

was between that of AFR and EAS samples (Table S4). Prior

GTEx consortium analyses identified 221 protein-coding genes

associated with AFR ancestry (Melé et al., 2015), of which 44

overlapped with our analysis (p = 2.2e-16) (and exhibited similar

effect sizes; r2 = 0.84, p = 3.4e-18) (Figures 4C and 4D; Table S4).

We observed fewer significant associations within cancer

types, with a maximum of 61 in the EAS-EUR hepatocellular car-

cinoma (LIHC) analysis (Table S4). Several genes were consis-

tently identified across cancer types. For example, four AFR-

associated genes (CRYBB2, NOTCH2NL, LOC90784, and

PPIL3) and nine EAS-associated genes (POM121L10P,

TSPAN10, THOC3, XKR9, LOC162632, SIRPB2, MGC23270,

DDX11L2, and TGOLN2) were significant in at least 33% of the

cancer types (Figures 4A, 4B, 4E, and 4F).

However, as in the methylation analyses above, the effect

sizes in the mRNA analyses were much higher in individual can-

cer types: over 60% of ancestry-associated genes in these ana-

lyses had coefficients greater than one, relative to only 2% in the

pan-cancer analyses (EAS-EUR 12/654, AFR-EUR 7/327) (Fig-

ures S5A–S5D). We conclude that, although common ancestry

associations exist across cancers, the strongest associations

are within individual cancer types.

To validate themRNA results, we compared EAS data from the

ICGC PCAWG Japanese liver cancer (LIHC) cohort to TCGA

EUR LIHC samples. We selected LIHC because it does not split

into subgroups, whereby different subgroup compositions might

confound our analyses. Among the 54 genes found to be

ancestry associated within TCGA, we found a significant corre-

lation (p < 0.01) between beta values calculated within TCGA

and using the new PCAWG data and 62% concordance based

on directionality (positive or negative) (Figures S5E and S5F). In

contrast, 54 randomly selected genes exhibited only 37%

concordance between the datasets. Next, to determine if

expression patterns were similar between the two datasets on

a per sample basis, we weighted each gene’s expression by

the absolute value of its beta to account for its ancestry effect

size and then summed across genes in each sample. In both

PCAWG and TCGA, the EAS and EUR samples were enriched

with genes with positive and negative beta values, respectively,

as expected, and the differences were significant (t test p < 1e-6

in all cases; Figures S5G–S5J). We conclude that our ancestry

associations largely validated.

Two of the pan-cancer hits, Glutathione S-Transferase Theta 1

(GSTM1) and Crystallin Beta B2 (CRYBB2), were previously

associated with both ancestry and susceptibility to cancer

(White et al., 2008; Zhang et al., 2011; Bin and Luo, 2013; Mo

et al., 2009; Faruque et al., 2015). CRYBB2, specifically, has

high expression among African-American women with Luminal
Ex (vertical axis) analyses, for ancestry-associated mRNAs identified in both

1 and CRYBB2 and (F) PPIL3 and FBLL1. Dot sizes indicate sample sizes, and



ll
Article
A breast tumors (D’Arcy et al., 2015). These genes exhibited

consistent ancestry associations across different tissue types,

though with varying magnitude (Figures 4A and 4E).

Detection of ancestry-associated mRNA expression is heavily

dependent upon accurately controlling for cancer subtype distri-

butions across ancestries. For example, breast cancer subtypes

differ widely in expression profiles (Cancer Genome Atlas

Network, 2012) and associate with ancestry (Huo et al., 2017;

Troester et al., 2018). As a result, when not controlling for sub-

type, over 2,000 genes appeared to be associated with AFR

ancestry in BRCA (Table S4), and 1,427 genes appeared to be

associated with EAS ancestry in esophageal cancers. After con-

trolling for subtype and batch, however, these numbers dimin-

ished to 59 and 0, respectively (Figure 4A; Table S4). Our cohort

included nine cancer types that have been further subclassified

and five that have not (Table S4). On average, prior to subtype

correction, we detected 358 ancestry-associated mRNAs in

the former group and only 9 in the latter. After subtype correc-

tion, however, we detected an average of 9–10 associations in

both groups. Many cancer subtypes are defined by differences

in methylation, miRNA, and somatic genetic profiles in addition

tomRNA (Hoadley et al., 2018), indicating the value of generating

comprehensive molecular data to conduct properly controlled

comparisons.

miRNA Associations with Genetic Ancestry
An important consideration in miRNA analysis across ancestries

is the possibility of artifacts associated with germline variants. In

generating miRNA mature strand (miR) expression data, TCGA

considered only exact-match read alignments (Chu et al.,

2016). If an ancestry is enriched for a variant within a miR,

sequence reads for that mature strand will be undercounted.

To mitigate this artifact, we ignored 41 miRs that contain

ancestry-specific SNPs (Table S5).

Among the remaining miRs, 149 miRs exhibited ancestry-dif-

ferential expression passing a significance threshold of FDR

q < 0.001 in the pan-cancer analysis (Figures 5A and 5B; Table

S5). Fewer miRs exhibited associations within individual cancer

types or subtypes, with a maximum of 54 in BRCA. Thus, similar

to the methylation and mRNA results, there was sufficient com-

monality across cancer types that the increased power in the

pan-cancer analysis identified larger numbers of associations.

However, as with methylation and mRNAs, the associations in

the pan-cancer miRNA analysis represented only small differ-

ences between ancestries; none had even a 2-fold change in

expression. Conversely, associations within cancer types often

represented greater differences, sometimes over 4-fold

(Figure 5B).

We therefore performed a separate analysis to focus on miRs

with at least 2-fold differences in expression between ancestries.

Using this stringent effect size threshold in combination with a

more relaxed significance threshold (FDR < 0.05), we detected

117 associations across all cancer types and subtypes, and

none in the pan-cancer analysis. These ancestry associations

were distributed across 71 miRs and 22 tumor types and sub-

types: 89 associations for AFR, 27 for EAS, 1 for AMR, and

0 for SAS (Table S5; the 17 miRs with the largest effect sizes

are indicated in Figure S6A). Most miRs were associated with

ancestry in only one tumor type. Differences in the numbers of
observed associations reflected the number of samples from

different ancestry groups in a cancer type, and therefore statis-

tical power.

We next determined the extent to which the miR associations

could be explained by differential expression of the genes that

host them. Most miRNAs (74%) overlap a ‘‘host’’ gene on the

same strand and tend to be expressed with that gene (Fig-

ure S6B; Table S5; STAR Methods, Resources for miRNA anno-

tation). However, none of the 117 significant miR-ancestry asso-

ciations that reached our effect size threshold corresponded to

an mRNA that was similarly differentially expressed between

the same ancestries in the same cancer type.

Two contributors to this disparity are that some differentially

expressed miRs did not have same-strand host genes, and

others had host genes (particularly non-coding transcripts)

whose expression was not assessed by TCGA. Among the 71

differentially expressed miRs, 66 (93%) were hosted, compared

to only 74% of miRs overall (p = 0.0004, test of proportions).

However, for approximately half of these 66 hosted miRs,

expression of the host gene was not assessed by TCGA.

A third reason is that most correlations between hosted miRs

and host genes were modest, due to the diverse genomic con-

texts in which miRNAs occur and to the many factors that can in-

fluence correlations between expression of a host gene and its

hosted miR(s) (Figures 5C, 5D, and S6B–S6J). For example, for

four TCGA cohorts, few Spearman correlations between hosted

miRs and host genes had large positive values (medians 0.31–

0.36, Figure 5E; see also Figure S6K).

We also found that few miRNA host genes were themselves

ancestry associated. Of 62 AFR-associated mRNAs in four can-

cer types (BRCA, COAD, HNSC, and UCEC), only CLN8 was

identified as a host gene (for hsa-miR-3674, which was not

among the 743 miRs available for analysis). Of the 56 EAS-asso-

ciated mRNAs in BLCA, BRCA, and STAD, none was a miRNA

host gene. As a result, hosted miRs were not enriched among

the 71 ancestry-associated miRNAs.

Taken together, we found that ancestry-associated differ-

ences with large effect sizes in miRNA expression were largely

specific to individual cancer types, as was the case with methyl-

ation and mRNA. However, expression correlations between

hosted miRs and host genes were generally weak, and few

ancestry-associated mRNAs were miRNA host genes. At the

same time, �80% of ancestry-associated miRs with large effect

sizes were within host genes, which suggests that work to iden-

tify (epi)genetic causes of a miR being ancestry associated will

often need to account for different or more subtle effects of those

same factors on a host gene.
Relation between Ancestry Associations and Germline
Genetics
The ancestry associations we observed in DNA methylation and

RNA expression raise two questions: First, how are these asso-

ciated with germline genetic differences? And second, are these

differences associated with cancer? We attempted to address

the first question by identifying ancestry-associated expression

quantitative trait loci (eQTLs) associated with the mRNA differ-

ences we had identified. We attempted to address the second

question by determining whether loci encoding ancestry-
Cancer Cell 37, 639–654, May 11, 2020 647
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Figure 5. Ancestry-Associated miRNA Mature Strands

(A) Number of ancestry-associated miRs (FDR q < 0.001), pan-cancer and in six cancer types.

(B) Distributions of log2 fold changes for the associations in (A).

(C) Ancestry-differential expression of miR-628-5p in basal BRCA, and miR-4326 in MSI STAD. Violin plot widths reflect kernel density estimates; solid and

dashed lines reflect median and interquartile range.

(D) Genomic neighborhood of hsa-mir-628, modified from the UCSC browser. ThemiRNA is within an intron of and on the same strand as host geneCCPG1. Red

boxes are TSS loci (Marsico et al., 2013). The pale blue box at the bottom is a miRBase v22.1 read pileup on the miRNA’s stem-loop sequence.

(E) Expression of miR-628-5p and CCPG1 in BRCA (left) and KIRC (right) samples, with Spearman rho values.

(F) Distribution of rho values between hosted mature strands and host genes in BLCA, BRCA, CESC, and ESCA.

See also Figure S6 and Table S5.
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associated genes are non-randomly distributed between ances-

tries in cancer.

Ancestry associations in mRNA expression can be due to dif-

ferences in underlying genetics or in the environments experi-

enced by different ancestry groups. In the former case, we

might expect to identify eQTLs. We therefore assessed the

extent to which both cis- and trans-eQTLs might account for

ancestry-differential mRNA expression. We first identified

ancestry-associated genetic polymorphisms by testing for the

association between SNP genotype proportions and ancestry

using TCGA cohort matched normal samples (n = 10,678).

Approximately 85% of tested SNPs were associated with

ancestry. We then integrated these data with a cancer cis-

and trans-eQTLs catalog, PancanQTL (Gong et al., 2018), to
648 Cancer Cell 37, 639–654, May 11, 2020
find ancestry-associated SNPs that overlap cancer-type-spe-

cific eQTLs.

Focusing on cancer types with at least 10 minority population

samples, we observed varying numbers of cancer-type-specific

cis-eQTLs associated with ancestry-specific gene expression:

from 2,760 in UCEC to 26,089 in BRCA in AFR-EUR compari-

sons, and from 3,311 in UCEC to 44,640 in THCA in EAS-EUR

comparisons (Table S6). We found support for ancestry-associ-

ated genetic variation for 64%–90% of these cis-eQTLs (Figures

6A and 6B). We detected fewer such associations among trans-

eQTLs, possibly due to the more stringent corrections required

for multiple hypotheses (Figures S7A and S7B; Table S6).

Much of the ancestry-associated differences in expression

linked to cis- or trans-eQTLs can be explained by differences
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in genotype frequencies underlying these loci (Figures 6C and

S7C). We conclude that germline genetic variation can partially

explain differences in mRNA expression across populations in

a cancer-type-specific manner.

To assesswhether the ancestry associations that we identified

in methylation and mRNA expression might be associated with

the development of cancer, we evaluated whether one ancestry

was enriched at each of the involved genomic loci in TCGA sub-

jects with admixed ancestry. We focused on the AFR-EUR anal-

ysis because admixed populations were best represented in our

dataset for this comparison. In Figure 1D, we found that no single

locus was significantly enriched with AFR or EUR ancestry when

considering all loci as independent hypotheses. Here, we

considered whether focusing on loci with ancestry-associated

differences in methylation or expression might provide greater

resolution.

In aggregate, both the 191 loci with pan-cancer ancestry-

associated differences in mRNA expression (excluding genes

that spanned ancestry blocks and therefore had ambiguous re-

sults) and the 176 loci with pan-cancer ancestry-associated dif-

ferences in methylation were modestly enriched for one

ancestry—most often AFR—relative to what would be expected

by chance (Wilcoxon p < 0.001 in both cases; Figures S7D and

S7E). These findings support the hypothesis that pan-cancer dif-

ferences inmethylation andmRNA expression between AFR and

EUR ancestries contribute to cancer, with a modest bias toward

association between AFR ancestry at these loci with cancer.

Evaluation of additional cohorts will be necessary to validate

this finding.

Integrated Ancestry-Associated Pathways and Cell
States
We integratedacrossourmolecular data to answer twoquestions:

First, do ancestry-associated differences in methylation account

for ancestry-associated differences in mRNA expression? And

second, do all these molecular features, when taken together,

indicate consistent differences in activation of specific molecular

pathways? For the first question, we found that, among the 251

genes with ancestry-associatedmethylation, 27 were also among

the 806 geneswith annotatedCpGs that exhibited ancestry-asso-

ciated mRNA expression, constituting a strong association (p <

0.001, OR = 7; Figure S7F). This association was strongest for

genes with the most differentially methylated CpGs (Figures

S7G and S7H). However, differential methylation could account

for only 3.3% of differentially expressed genes.

For the second question, we used PARADIGM (Vaske et al.,

2010; Sedgewick et al., 2013) to infer the activation of �19,000

pathway features between ancestry groups within tumor types.

We observed significant differential features between AFR and

EUR groups in eight tumor types (Table S7). Only BRCA, howev-

er, provided significant differences in ‘‘key’’ regulatory nodes

with at least 10 differential downstream targets, and only

three—ATM, a known breast cancer susceptibility gene; SP1;

and MAPK14—remained significant in subtype-adjusted ana-
(C) Representative cis-eQTL rs2058665-PPIL3 in BRCA. (Ci and Cii) PPIL3 expres

each genotype, by ancestry (Wald’s association test, FDRq < 0.01). (Civ)PPIL3 ex

Violin plot widths reflect kernel density estimates. Lines show median and interq

See also Figure S7 and Table S6.
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lyses (within the Luminal A subtype) (Figures 7A and 7B). Simi-

larly, significant EAS-EUR differential features were observed

in seven tumor types, but key regulatory nodes were identified

only in BLCA, BRCA, and ESCA (Figure 7C). None of these re-

mained significant in subtype-adjusted analyses, suggesting

that they reflect subtype enrichments.

We also assessed whether known cancer pathways and driver

genes (Knijnenburg et al., 2018; Sanchez-Vega et al., 2018;

Bailey et al., 2018) are overrepresented among genes with differ-

ential PARADIGM-inferred IPLs from subtype-adjusted ana-

lyses, using a hypergeometric test with Benjamini-Hochberg

multiple testing corrections. Significantly enriched pathways

included DNA repair, HIPPO, RTK-RAS, p53, NRF2, and Notch

pathways in the BRCA AFR-EUR comparison and the WNT

pathway in the BLCA EAS-EUR comparison (Figure 7D; Table

S7). These analyses suggest contributions of ancestry to can-

cer-related pathway activity.

We also hypothesized that the cellular composition of individ-

ual cancers might differ between populations. Indeed, in EAS,

BLCA samples were depleted for immune infiltrates as estimated

from mRNA expression after controlling for age, gender, sub-

type, TMB, and aneuploidy (Figure 7E), and higher inferred

pathway activities of immune-related features were found in

the EUR group (Figure 7A). The mRNA expression of CD274

that encodes PD-L1 was also significantly lower in EAS relative

to EUR and AFR samples (Figure 7F). These results are consis-

tent with a prior orthogonal analysis that found lower lymphocyte

infiltrates in EAS samples (Thorsson et al., 2018) and suggest

that ancestry should be taken into account when evaluating

immunotherapy response.

DISCUSSION

This comprehensive analysis of molecular features associated

with ancestry across a range of tumor types has implications for

both cancer and normal tissue, given the limited prior analyses

available. An analysis of mRNA profiles from several dozen non-

neoplastic tissues found that differences between AFR and EUR

tended to be shared across tissue types (Melé et al., 2015).We ob-

tained a similar result when considering all statistically significant

associations. However, when considering associations whose ef-

fect sizes arebiologicallymeaningful,we found that ancestry asso-

ciations tend to be tissue specific, regardless of whether those as-

sociations reflect rates of somatic alteration, degrees of CpG

methylation, or levels of mRNA or miRNA expression

The sources of these ancestry associations are unclear. Our

eQTL analyses indicated that germline genetic differences could

explain much of the differences in mRNA expression, but varied

environmental exposures may also be a major contributor.

Although more than two-thirds of TCGA donors were from the

United States, most EAS donors were likely from other countries,

and the collected samples may not represent the entire cancer

patient population in any country. TCGA samples were largely

collected from academic centers whose patients are often
sion by (Ci) ancestry and (Cii) SNP genotype. (Ciii) Proportions of samples with

pression by genotype between EUR andAFR samples (p values:Wilcoxon test).

uartile ranges.
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Figure 7. Ancestry-Differential Pathway Features

(A) Mean differences (red, higher in EUR; blue, lower in EUR) in PARADIGM-inferred integrated pathway levels (IPLs) of regulatory nodes with 310 ancestry-

differential downstream targets, by tumor type. Gray denotes regulatory nodes that are not differential or have <10 differential downstream targets.

(B) ATM IPLs of AFR and EUR Luminal A BRCA samples.

(C) MYC/Max complex IPLs of EAS and EUR BLCA subtype 5 samples. In (B) and (C), the violin plot widths reflect kernel density estimates, and internal boxplots

show median, interquartile range, and 1.5 times the interquartile range.

(D) Cancer-associated genes and pathways enriched among differential pathway features between ancestry groups, from subtype-adjusted analyses.

(E) Association of EAS ancestry with immune infiltration score. Coefficients from amultivariate logistic regression are shown on the horizontal axis. Red and green

dots indicate correlations with FDR q < 0.05 and < 0.25, respectively. Lines indicate 95% confidence intervals.

(F) Expression of CD274, which encodes PD-L1, in AFR, EAS, and EUR ancestries across all cancers with at least 10 samples from the minority cohort. Boxplots

show median, interquartile range, and 1.5 times the interquartile range.

See also Table S7.
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from different socioeconomic strata than the general population.

Separating ancestry from the effects of social and environmental

factors, and comparing ancestral groups across regions and

countries, requires greater study (Gomez et al., 2015).
Although some ancestry-associated differences in methylation

and RNA expression are likely to be somatic, we found evidence

thatmany are shared by normal tissue. A robust distinction of can-

cer-specific ancestral associationwill require profilingmore tissue
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samples across ancestries, especially normal tissue samples, due

to the limitations of current data. However, we did observe

modest evidence that AFR-EUR differences in methylation and

mRNA expression are causally related to cancer and that these

differences were enriched in several cancer-related and immune

pathways. These findings may inform cancer prevention and

treatment across ancestral groups.

In the process of detecting ancestry associations, we found

that uneven distributions of ancestry groups between cancer

subtypes was amajor confounder. The causes of these ancestry

associations with cancer subtypes—possibly disparities in can-

cer incidence or sample collection biases—are not understood

and deserve further exploration, but by controlling for subtypes,

we aimed to detect ancestry-associated differences within sub-

types as well. We were aided by TCGA-derived molecularly

defined subtypes (Sanchez-Vega et al., 2018). This ability to con-

trol for subtypes, for example, allowed us to focus on FBXW7

mutations as associated with ancestry, where prior analyses

had instead identified TP53 and PIK3CA mutations (Yuan et al.,

2018) that we found to disappear with subtype controls.

A particularly robust finding was enrichment of VHL and

PBRM1 mutations and chromosome 3p loss, on which these

genes reside, in EUR over AFR KIRC samples. Given the central-

ity of VHL and 3p loss to KIRC, samples without these alterations

might represent a different cancer subtype, one which is more

prevalent in AFR patients. Many of the VHL wild-type cases

not only differ transcriptomically from VHL mutants but also

have very disparate expression profiles themselves (Beroukhim

et al., 2009). VHL wild-type cases may therefore represent

more than one subtype, or their limited transcriptomic similarities

may be particularly important. The indication that EAS BLCA

samples exhibit less immune infiltration than EUR samples might

suggest differing responses to immunotherapies such as Bacil-

lus Calmette-Guérin (BCG) and immune checkpoint inhibition,

which formmainstays of BLCA treatment (Marchioni et al., 2018).

Perhaps the greatest analytic obstacle we faced was the small

number of non-EUR TCGA samples. Only 17% were at least

partially non-EUR, as opposed to �40% of the U.S. general

population (https://www.census.gov/quickfacts/fact/table/US/

PST045218) and cancer population (https://seer.cancer.gov/

archive/csr/1975_2016/results_merged/topic_race_ethnicity.pdf).

Even fewer non-EUR samples would have been included if AFR

BRCA collection had not been prioritized (Huo et al., 2017). Addi-

tional comprehensively characterized non-EUR cancers would be

of great value.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

TCGA SNP 6.0 array and

HumanMethylation450 array

TCGA legacy archive https://portal.gdc.cancer.gov/legacy-archive/

TCGA whole-exome sequencing Genomic Data Commons RRID: SCR_014555

Haplotype Reference Consortium

reference data

Haplotype Reference Consortium http://www.haplotype-reference-

consortium.org/

1000 Genomes project data The International Genome Sample Resource RRID: SCR_006828

Somatic mutation, copy number and other

genomic/immune features

Genomic Data Commons; Taylor et al., 2018 https://gdc.cancer.gov/about-data/

publications/pancanatlas

Mutational signature Alexandrov et al. (2020) N/A

Whole genome bisulfite sequencing Genomic Data Commons;

Schuyler et al., 2016

RRID: SCR_014514

TCGA mRNA normalized and miRNA data Genomic Data Commons https://gdc.cancer.gov/about-data/

publications/pancanatlas

TCGA clinical and subtype data Genomic Data Commons; Sanchez-Vega et al.,

2018; Robertson et al., 2017

https://gdc.cancer.gov/about-data/

publications/pancanatlas

ICGC PCAWG data International Cancer Genome Consortium https://dcc.icgc.org/pcawg

MSK-IMPACT data cBioPortal RRID: SCR_014555

Additional somatic validation datasets Peña-Llopis et al. 2012; Krishnan et al. 2016;

Nassar et al., 2019; Wu et al., 2019; Chang

et al., 2017

N/A

Additional methylation validation datasets Gene Expression Omnibus;

https://www.ncbi.nlm.nih.gov/geo/

GSE36369; GSE41826; GSE53816;

GSE101431

miRBase http://www.mirbase.org/ RRID: SCR_003152

Software and Algorithms

AIM local ancestry http://github.com/jcarrotzhang/

ancestry_from_panel/tree/masgter/

GDAN_AIM

N/A

EIGENSOFT smartpca v9102 Price et al., 2006 https://github.com/chrchang/eigensoft/

ADMIXTURE v1.23 Alexander et al., 2009 http://software.genetics.ucla.edu/admixture/

PLINK v1.9 Purcell et al., 2007 https://www.cog-genomics.org/plink/1.9/

EthSEQ Romanel et al., 2017 https://github.com/cibiobcg/EthSEQ

SHAPEIT v2 Delaneau et al., 2011 https://mathgen.stats.ox.ac.uk/

genetics_software/shapeit/shapeit.html

RFMIX v1.5.4 Maples et al., 2013 https://github.com/slowkoni/rfmix

McCarthy Group tools https://www.well.ox.ac.uk/�wrayner/tools/ N/A

Michigan Imputation Server https://imputationserver.sph.umich.edu N/A

Eagle v2.3 Loh et al., 2016 https://data.broadinstitute.org/

alkesgroup/Eagle/

Minimac 3 Howie et al., 2012 https://genome.sph.umich.edu/wiki/Minimac3

Hail framework https://github.com/hail-is/hail N/A

openSeSAMe Zhou et al., 2018b https://bioconductor.org/packages/devel/

bioc/vignettes/sesame/inst/doc/sesame.html

rtracklayer Lawrence et al., 2009 https://www.bioconductor.org/packages/

release/bioc/html/rtracklayer.html

PARADIGM Vaske et al., 2010 http://sbenz.github.io/Paradigm/

Cancer Cell 37, 639–654.e1–e6, May 11, 2020 e1

https://portal.gdc.cancer.gov/legacy-archive/
http://www.haplotype-reference-consortium.org/
http://www.haplotype-reference-consortium.org/
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://dcc.icgc.org/pcawg
https://www.ncbi.nlm.nih.gov/geo/
http://www.mirbase.org/
http://github.com/jcarrotzhang/ancestry_from_panel/tree/masgter/GDAN_AIM
http://github.com/jcarrotzhang/ancestry_from_panel/tree/masgter/GDAN_AIM
http://github.com/jcarrotzhang/ancestry_from_panel/tree/masgter/GDAN_AIM
https://github.com/chrchang/eigensoft/
http://software.genetics.ucla.edu/admixture/
https://www.cog-genomics.org/plink/1.9/
https://github.com/cibiobcg/EthSEQ
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
https://github.com/slowkoni/rfmix
https://www.well.ox.ac.uk/%7Ewrayner/tools/
https://www.well.ox.ac.uk/%7Ewrayner/tools/
https://imputationserver.sph.umich.edu
https://data.broadinstitute.org/alkesgroup/Eagle/
https://data.broadinstitute.org/alkesgroup/Eagle/
https://genome.sph.umich.edu/wiki/Minimac3
https://github.com/hail-is/hail
https://bioconductor.org/packages/devel/bioc/vignettes/sesame/inst/doc/sesame.html
https://bioconductor.org/packages/devel/bioc/vignettes/sesame/inst/doc/sesame.html
https://www.bioconductor.org/packages/release/bioc/html/rtracklayer.html
https://www.bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://sbenz.github.io/Paradigm/


ll
Article
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for data or code generated in this study should be directed to and will be fulfilled by the Lead Con-

tact, Andrew D. Cherniack (achernia@broadinstitute.org).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The raw ancestry assignments and local ancestry calls generated during this study can be found at https://portal.gdc.cancer.gov.

Code generated for local ancestry-related analyses is available from the following URL https://github.com/jcarrotzhang/ancestry-

from-panel/tree/master/GDAN_AIM.

METHOD DETAILS

Ancestry Assignment
We assigned ancestries using five separate approaches, including three (Broad Institute, Washington University, and University of

California San Francisco methods) that are based upon SNP 6.0 array genotyping calls (https://portal.gdc.cancer.gov/legacy-

archive/) and two (University of Trento and ExAC/Broad methods) based upon exome sequencing data (https://portal.gdc.cancer.

gov/). Details on each method are as follows.

Broad Institute - SNP and exome based calls

We merged the genotype files of all TCGA normal samples with reference samples from the 1000 genome project. We excluded

TCGA variants with excess missingness of 5% or failed the Hardy Weinberg equilibrium test. EIGENSOFT smartpca version 9102

(Price et al., 2006) was used to remove outliers and 9,040 samples were kept after quality control. We used 90,4099 markers with

minor allele frequency greater than 1% in the 1000 genome cohort for global ancestry identification of TCGA samples using

smartpca. We defined the AFR, EUR and EAS ancestral groups using the 1000 genome samples based on smartpca generated

PC1 and PC2, and AMR and SAS ancestral groups based on PC2 and PC3. We then used ADMIXTURE version 1.23 (Alexander

et al., 2009) to estimate the percentage of global ancestry of AFR, EUR, EAS, AMR and SAS (k = 5) for each sample. Samples

with the proportion of the secondary ancestry greater than 20% were considered as admixed samples.

The Exome based ancestry assignments for 8,066 TCGA patients were provided by the Exome Aggregation Consortium (ExAC).

The ExAC dataset ancestry calls were created by using principal component analysis (PCA) of 5400 common exome SNPs to stratify

the exomic data into principal components and identify major clusters of continental ancestry (Lek et al., 2016).

Washington University - SNP based calls

Birdseed genotype files were converted to individual VCF files and thenmerged into a combined VCFs containing all 11,459 samples

and 522,606 variants. We conducted PCA as implemented by PLINK 1.9 (Purcell et al., 2007). Specifically, we retained 298,004 var-

iants with MAF > 15% for population structure analysis. The resulting eigen values and eigen vectors were then recorded. PC1 and

PC2 accounted for 51.6% and 29.2% of the variations across the first 20 PCs and none of the trailing PCs accounted for more than

3.2%. We then visually examined samples and their self-reported ethnicity based on PC1 and PC2. We defined (1) EUR as samples

that self-reported as white and with PC1 < 0.01 and PC2 < 0.02, (2) EAS as samples that self-reported as EAS and with PC1 > 0.01

and PC2 > 0.02, and (3) AFR as samples that self-reported as black or AFR and with PC1 > 0.01 and PC2 < 0.

University of California San Francisco - SNP based calls

Ancestry calls were computed based on partition around medoids (PAM) clustering of principal components (PC’s) 1-3 generated

from quality controlled genotyping files of 10,128 individuals. PCA without LD pruning was computed in PLINK 1.9 (Purcell et al.,

2007), and visual examination of the principal component plots annotated by self-reported race and ethnicity reveal the first 3-4

PCs capture population structure information, while PC 5-6 capture outliers. PCA-based initial ancestry clusters were determined

by performing both k-means and PAM clustering on either the first three or first four PCs. We computed gap statistics and average

silhouette widths iteratively for number of clusters, k = 1 to 10 for k-means and PAMmethods respectively to find the optimal number

of clusters for eachmethod. Four clusters were found to be optimal based on average silhouette width statistics computed iteratively

for number of clusters, k = 1 to k = 10 (GDC Publication Page Figure S1-A https://gdc.cancer.gov/about-data/publications/CCG-

AIM-2020). The four PCA-based ancestry clusters show high concordance with the self-reported race/ethnicity of the individuals

(GDC Publication Page Figure S1-B,C,D https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020). The four ancestry cluster

are as follows: (1) PAM ancestry cluster 1 is concordant with EUR ancestry, capturing 97.27% of individuals self-reporting as White,

as well as 82.16% of individuals with self-reported non-Hispanic/non-Latino ancestry and 45.96%with self-reported Hispanic/Latino

ancestry; (2) ancestry cluster 2 with AFR ancestry, capturing of 97.53% of individuals self-reporting as Black/African-American race;

(3) ancestry cluster 3 with EAS ancestry, capturing 90.88% of individuals self-reporting as EAS and 88.89% self-reporting as Native

Hawaiian/Pacific Islander; and (4) ancestry cluster 4 with a subgroup of individuals with AMR ancestry capturing 60% of individuals

self-reporting as American Indian /Alaska Native and 47.2%with self-reported Hispanic/Latino ethnicity (GDC Publication Page Fig-

ure S1-B https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020). PC’s 1-7 show further population sub-structure in the
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EAS and EUR ancestry clusters (GDC Publication Page Figure S2 https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020).

PAM ancestry sub-clusters were computed using PC’s 1-7 for individuals within the EAS ancestry cluster which yielded two optimal

sub-clusters (GDC Publication Page Figure S2-A https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020), and within the

EUR ancestry cluster which yielded three optimal sub-clusters (GDC Publication Page Figure S2-B https://gdc.cancer.gov/about-

data/publications/CCG-AIM-2020). Of note, 72.46% of EUR sub-cluster 3 self-reports as EAS (15.94% have no race reported).

Ancestry clusters, sub-clusters, self-reported race and ethnicity and PC’s 1-7 are provided for each individual (GDC Publication

UCSF_Ancestry_Calls.csv https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020). For individuals represented by more

than one sample, blood-derived normal samples were preferentially selected; for those with more than one blood-derived samples,

samples with higher call rates were retained leaving 10,128 unique individuals.

University of Trento - whole-exome sequencing based calls

Ancestry analysis was performed bymeans of EthSEQ (Romanel et al., 2017). First, by combining 1000Genomes Project and Ashke-

nazi (Carmi et al., 2014) genotype data, a reference model including 70,415 common (MAF > 1%) exonic SNPs and representing 6

main ethnic groups (EUR, ASH, AMR, AFR, SAS, EAS) was built. Then, genotypes of all considered SNPs for 9,666 TCGA individuals

were inferred fromWES data using ASEQ (Romanel et al., 2015) and a target model for each tumor tissue (N = 24) was built. Genotype

calls fromWES required depth of coverage > = 10X and read/base mapping qualities > = 20. EthSEQ PCA-based analysis was then

performed for each tumor tissue on aggregated target and reference models genotype data considering only SNPs with appropriate

overall call rate (99% threshold was applied). Three-dimensional Euclidean space defined by the first three PCA components (‘‘3D’’

EthSEQoption) was used to first generate the smallest convex sets identifying reference ethnic groups and then to assign an ancestry

to all TCGA individuals (GDCPublication Page Figure S3a https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020). EthSEQ

refinement analysis was used to better characterize spatially close AMR and EUR groups (GDC Publication Page Figure S3b https://

gdc.cancer.gov/about-data/publications/CCG-AIM-2020). Individuals projection inside a reference ethnic group set were annotated

with the corresponding ancestry and INSIDE label; individuals outside ethnic group sets were annotated with the nearest (Euclidean

distance) ethnic group and CLOSEST label. Robustness of calls was determined using 3 models (utilizing all, even or odd chromo-

somes) built using 1000Genomes Project genotype data, including 246,164 common (MAF > 1%) exonic SNPs (103,471 and 142,693

even or odd chromosomes, respectively) and representing 5 main ethnic groups (EUR, AMR, AFR, SAS, EAS). Overall concordance

of EthSEQ ancestry calls between the three analyses is shown in GDC Publication Page Figure S3a, while fraction of calls preserved

using only even/odd chromosomes is shown in GDC Publication Page Figure S4 (https://gdc.cancer.gov/about-data/publications/

CCG-AIM-2020).

Consensus ancestry calls for the TCGA cohort

After ancestries were independently determined using these five methods, consensus calls were created based on the ancestral

population that received the majority of assignments for each patient. Ancestry assignments are in Table S1.

Ancestry calls for the Foundation Medicine cohort

Comprehensive genomic profiling was performed in a Clinical Laboratory Improvement Amendments (CLIA)-certified, CAP (College

of American Pathologists)-accredited laboratory (Foundation Medicine, Cambridge, MA, USA) on de-identified, consented-for-

research samples using the FoundationOne test. For each sample, genome-wide ancestry-calling and chromosome-level

ancestry-calling were performed. Ancestry callers were trained on 1000 Genomes samples to recognize five ancestral groups

(AFR, AMR, EAS, EUR, SAS), using SNPs cataloged by both the 1000 Genomes Project and captured by FoundationOne. These

SNPs were projected using principal components analysis, and the top N resulting features were used to train a random forest clas-

sifier (with N = 5 for genome-wide calling, and N = 100 for chromosome-level calling). Samples with > 80% chromosome-level

consensus calls that matched the genome-wide call were considered in this study. Next, disease ontology terms in the Foundation

Medicine dataset were harmonized with TCGA datasets (Table S2) to ensure proper comparisons. Finally, Fisher’s Exact test was

used to determine statistically significant differences in alteration rates in different ancestral groups. Admixture analysis was also

performed, wherein ADMIXTURE was run on the 1000 Genomes AFR, EAS, and EUR samples with K = 3 to learn admixture groups,

and then ADMIXTURE was rerun on the Foundation Medicine data in projection mode using the groups learned on the 1000 Ge-

nomes data.

Local ancestry assignment

We performed local ancestry identification on 10,366 samples based on the SNP array genotype data. We used SHAPEIT v2 (Dela-

neau et al., 2011) to phase the SNPs and then RFMix version 1.5.4 (Maples et al., 2013) to infer local, AFR, EUR or EAS ancestry by

chromosomes, using 1,668 AFR, EUR, or EAS samples from the 1000 genome Phase 3v5 reference panel as the reference panel. For

each sample, we collapsed nearby SNPs with the same ancestry into regions that were used for association analyses (Martin

et al., 2017).

TCGA tumor subtypes

TCGA subtypes for all tumor types except bladder cancer were published by the TCGA Pancancer Atlas (https://gdc.cancer.gov/

about-data/publications/pancanatlas, Sanchez-Vega et al., 2018). Bladder cancer (BLCA) mRNA subtypes were obtained fromRob-

ertson et al. (2017).

Imputation

Birdseed files were read in R using an in-house tool (courtesy of Donglei Hu), and 905,422 variants were loaded and analyzed in

PLINK 1.9 using the SNP Array 6.0 (release 35) annotation file. A total of 861,351 variants passed missingness thresholds of 5%

maximum per variant, and 10,917 samples passed missingness thresholds of 5% per sample. Hardy-Weinberg equilibrium (HWE)
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was calculated in PLINK for autosomal chromosome variants in the largest UCSF ancestry cluster (European ancestry cluster 1), and

SNPs out of HWE (< 10^-6) were flagged. Flagged SNPs were cross-referenced against cancer risk SNPs, and non-risk SNPs with

HWE < 10^-6 were removed. Minor allele frequency (MAF) was then calculated and variants with MAF < 0.5%were excluded. Dupli-

cate SNPs with identical genomic first positions were removed. A total of 838,948 autosomal chromosome variants for 10,128 indi-

viduals passed QC (clean file). PCA was performed on the clean genotyping file and final PAM-ancestry clusters were computed for

the 10,128 individuals for optimal k = 4 (see UCSF ancestry calls). We found very high concordance of initial and final ancestry as-

signments (99.98% matching, the 2 samples varying between initial and final ancestry cluster computation assigned to NA).

The cleaned genotyping file was then stranded and imputed against two reference panels: Haplotype Reference Consortium

(http://www.haplotype-reference-consortium.org/) and 1000 Genomes (https://www.internationalgenome.org/). For Haplotype

Reference Consortium, all palindromic SNPs were removed and stranding was done using the McCarthy Group tools (HRC-

1000G-check-bim-v4.29), which compares genotyping alleles to reference SNP list from Haplotype Reference Consortium (v1.1

HRC.r1-1.GRCh37.wgs.mac5.sites.tab) leaving 680,389 correctly matched variants for imputation. For 1000 Genomes, all palin-

dromic SNPs were removed and stranding was done using an in-house tool (courtesy of Scott Huntsman), which compares geno-

typing alleles to stated alleles from 1000Genomes (Phase 3v5) legend files leaving 678,304 correctly matched variants for imputation.

Imputation and phasing were performed using a standard pipeline on the Michigan Imputation Server (https://imputationserver.

sph.umich.edu). The process of phasing involved running on the WGS variant call file (VCF). To reduce the run time, the VCF file

was split-up into 22 files corresponding to individual autosomes. By default, Eagle (Loh et al., 2016) restricts analysis to bi-allelic var-

iants that exist in both the target and reference. Minimac 3 (Howie et al., 2012) was used to run the imputation. For Haplotype Refer-

ence Consortium, the HRC r1.1.2016 reference panel was selected using mixed population for QC, with a total of 39,127,678 SNPs

were returned after imputation. For 1000G, the 1000GPhase 3v5 reference panel was selected usingmixed population, with a total of

43,826,430 SNPs and 3,233,367 INDELs were obtained (1000G imputation courtesy of Younes Mokrab).

QUANTIFICATION AND STATISTICAL ANALYSIS

Ancestry and Molecular Features
Amultivariate regressionmodel was generated for each data type to determine the effects of ancestry on themolecular features while

controlling for potential confounders such as cancer types, subtypes, age and gender. For each data type, twomain regression tests

were performed: first, a pan-cancer analysis using all cancer types, and second, cancer type-specific analyses. For each analysis, p

values were corrected for multiple hypotheses using the Benjamini-hochberg procedure (Benjamini and Hochberg, 1995).

Somatic Alteration

Pan-cancer mutation and copy number data were used (https://gdc.cancer.gov/about-data/publications/pancanatlas). ICGC

PCAWG data were obtained from https://dcc.icgc.org/pcawg and MSK-IMPACT data were obtained from https://www.

cbioportal.org/. Mutational signature data were obtained from Alexandrov et al. (2020). We used signatures 1 to 45 in our analysis.

Arm-level SCNA calls, TMB, genome doubling, immune infiltration score represented by leukocyte fraction, and aneuploidy scores

were downloaded from previously published work (Taylor et al., 2018).

For the pan-cancer analyses, we counted somatic SNVs, indels and focal CNAs for all significantly mutated genes in all cancer

types. For cancer-specific analyses, we counted somatic SNVs, indels and focal CNAs for significantly mutated genes in that cancer

type. Focal CNA was defined by a log2 copy number ratio > 1 or < �1. Multivariate logistic regression was applied to test the asso-

ciation of somatic alteration for each gene with ancestry, while coding AFR or EAS ancestry as 1, and EUR ancestry as 0, with con-

trolling for age, gender, and cancer type and subtype when applicable. Genes with FDR adjusted q values < 0.1 were considered as

candidates for validation. In the Foundation Medicine cohort, gene alterations (short variants, copy alterations, and rearrangements)

were detected and alteration status was related to genetic admixture proportions using binomial logistic regression. For admixture

validation of FBXW7, VHL and PBRM1, we collapsed SNPs in the locus of each gene into blocks, and correlated the local ancestry of

the blocks with the somatic mutation status in the gene, using logistic regression controlling for the global ancestry of individuals

(somatic alteration �local ancestry + percentage of EUR ancestry + percentage of AFR ancestry).

To test if ancestry is associatedwith arm-level SCNA,multivariate logistic regressionwas usedwith controlling for age, gender, and

cancer type and subtype when applicable, as well as aneuploidy and genome doubling (ancestry �arm-level SCNA + aneuploidy +

genome doubling + age + gender + subtype). Similarly, to test if ancestry is associated with genomic/molecular features including

TMB, aneuploidy and IMS, regression was performed as ancestry �aneuploidy + TMB + IMS + age + gender + subtype.

DNA Methylation

IDAT files for Infinium HumanMethylation450 (HM450) arrays were downloaded from GDC (https://portal.gdc.cancer.gov/legacy-

archive/) and preprocessed using the openSeSAMe pipeline (Zhou et al., 2018b). We did not explicitly mask for design issues, to

enable associations between SNP artifacts and ancestry-differential probes. Samples with mixed ancestry background or undeter-

mined purity estimate were excluded, leaving 6,264 tumor samples. The HM450 array included 485,577 probes, 65 of which were

nested SNP probes (‘rs’ probes) that reflect the sample genotype rather than DNAmethylation. Whole-Genome Bisulfite Sequencing

(WGBS) data for sorted blood cells from 149 nonmalignant samples were downloaded from the BLUEPRINT project (Schuyler et al.,

2016) for orthogonal validation of HM450 array results. The 49 TCGA WGBS dataset (Zhou et al., 2018a) was downloaded from

Genomic Data Commons (https://portal.gdc.cancer.gov/). Four additional validation HM450 datasets were downloaded from

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, GSE36369; GSE41826; GSE53816; GSE101431). These
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include two datasets that studied DNA methylation in individuals of AFR, EUR and EAS ancestry, similar to the TCGA cohort: one of

whole blood (Heyn et al., unpublished, GSE36369) and the other of brain tissue (Guintivano et al., 2013; GSE41826). In order to assess

the validity of our ancestry-differential methylation calls in ancestries not well covered in TCGA, we also studied a dataset (Teh et al.,

2014, GSE53816) that assayed umbilical cord blood in three EAS populations, and another dataset (Carja et al., 2017, GSE101431)

obtained from lymphoblastoid cell lines from five human populations of more specific ancestry origins such as Mozabites and

Cambodians.

We performed a multivariate linear regression to identify probes that were differentially methylated between ancestry groups. The

model explicitly adjusts for tumor type and subtype (Sanchez-Vega et al., 2018), age, gender, and tumor purity. We performedmodel

fitting on both the entire TCGA cohort (pan-cancer analysis) as well as within each individual cancer type, with andwithout subtype as

a covariate. From the pan-cancer analysis, cancer subtypes known for global methylation alterations such as TGCT with hypome-

thylation and IDHmutant with hypermethylation are seenwith a higher number of corresponding cancer-type and subtype differential

probes, validating ourmodel fitting (Figure S3H). The significance of ancestry differenceswasmeasured by an F-test contrasting a full

model with a model without adjusting for ancestry differences (Table S3). After regression, the mean slope coefficient of methylation

from all ancestry groups was re-centered to zero for each probe. The effect size of a probe is calculated by the range of the slope

coefficients from different ancestry groups. Probes with effect size greater than or equal to 0.1 and adjusted p value less than

0.05 are considered ancestry-differentially methylated. We also tested alternative regression models including ones that depend

on the iCluster assignment (instead of tumor types and subtypes) and self-reported ancestry (instead of consensus inferred

ancestry). The top ancestry-differentially methylated genes were robust across alternative regression models (Table S3).

The 374 ancestry-differentially methylated sites that were not identified with design artifacts were projected and displayed using

UniformManifold Approximation and Projection (McInnes et al., 2018) based on their ancestry methylation bias. A probe was consid-

ered to be associated with a gene when the interrogated CpG was located from 1500bp upstream of the TSS until the TTS of any

isoform of the gene. Some probes may be associated with more than one gene, but only the one gene symbol is shown in the

plot for brevity. Alternative gene names are shown in Table S3.

To estimate the power of detecting DNA methylation differences, we modeled DNA methylation measurements as a binomial dis-

tribution with the number of experiments N equal to 40 and the mean equal to true methylation, with assigned ancestry-specific

methylation differences. N was set at 40 to model the average bead number for each probe in the Infinium DNA methylation micro-

array. To imitate the distribution of gender-specific DNA methylation, we introduced a gender difference modeled by a beta distri-

bution parameterized by a = 1 and b = 5 for the two shape parameters. We also introduced subtype-specific DNA methylation

modeled using a normal distribution with a mean of 0.1 and standard deviation of 0.2 with caps at 1 and 0 to keep values between

0 and 1. For each given methylation difference, we performed 1000 simulations and the same regression analysis we performed on

the real data. We then computed the fraction of significant ancestry-specific differences and plotted against known methylation

differences.

mRNA Expression

Pan-cancer mRNA normalized data (https://gdc.cancer.gov/about-data/publications/pancanatlas) was filtered to retain samples

with an admixture of <20% for EUR, EAS, and AFR ancestry. The samples were then split to compare EAS (n = 532) versus EUR

(n = 5,901) and AFR (n = 380) versus EUR (n = 5,901).The dataset was log2 transformed and filtered for genes present in >80% of

samples. The filtered genes (n = 16,269) were determined to be significantly associated with EAS versus EUR (FDR q < 0.001)

and AFR versus EUR (FDR q < 0.001) by linear regression correcting for TCGA plate ID and tumor specific subtype. The same linear

model was applied both across all cancer types and on a per cancer type basis for tumor types with more than ten samples of the

minor ancestry, corrected for tumor subtype where appropriate. ForGSTM1/CRYBB2 and PPIL3/FBLL1, the median expression per

tumor type and ancestry was plotted to highlight within-ancestry variance.

miRNA

We obtained the TCGA miRNA data prepared for the TCGA Pan-Cancer Atlas (https://gdc.cancer.gov/about-data/publications/

pancanatlas). This dataset includes expression levels of 743 miRNA mature strands (miRs) for 10,824 TCGA samples, which were

batch-corrected to enable pan-cancer analyses (pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrect-

MiRs_08_04_16.csv). The consolidated dataset included 8,180 samples across 32 tumor types for which both miRNA expression

data and ancestry calls were available (Table S6). NomiRNA data were available for GBM. Twelve of the 32 tumor types had subtype

annotation.

Before statistical tests, negative miRNA reads per million mapped reads (RPM) values (introduced due to the batch correction pro-

cedure) were set to zero, and miRNA RPM values were then log transformed using y = log2(x+1), where x values are the RPM values

and y values are the log-transformed values used for statistical analyses and visualization.

To determine ancestry associations, we applied a linear regressionmodel with a binary designmatrix based on the subtype calls as

predictors to explain the normalized expression across the samples of each tumor type and subtype. We then performed Wilcoxon

rank sum tests against ancestry calls on the output of this model. We applied the following pre-filtering criteria:

1. The sample size of both groups to be tested should be 5 or larger.

2. The coefficient-of-variation (CoV) across the expression levels of the union of samples of both groups was 0.1 or larger.

3. There were at least 5 samples among the union of samples of both groups with an RPM value of 25 or higher (4.7 in logarith-

mic space).
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4. miRNAs that were flagged as having ancestry-specific SNPs are discarded (n = 3). See below for more details about the

ancestry-specific SNPs.

Since in TCGA miRNA-seq data only exact-match reads (to the hg19 reference genome) were counted toward expression (Chu

et al., 2016), TCGA samples with SNPs in miRNAs will report artificially low (or zero) expression levels for these miRNAs.

Ancestry-specific SNPs inmiRNAswill thus lead to spurious relationships of differential miRNA expression between ancestry groups.

We therefore discarded miRNAs with ancestry-specific SNPs. We merged miRNA annotation from miRBase (http://www.mirbase.

org/, v21 released June 2014) with 1000 Genomes Phase 3 information from Ensembl, which contains ancestry-specific SNP allele

frequencies, and called SNPs ‘‘ancestry-specific’’ if the difference between the maximum andminimum AAFs of the SNP among the

five superpopulations (AFR, AMR, EAS, EUR, SAS) was 0.25 or larger. Table S6 lists the SNPs in miRNAs along with their ancestry-

specific allele frequencies. Process details are also provided in our GDC publication page (https://gdc.cancer.gov/about-data/

publications/CCG-AIM-2020).

To identify miRNA mature strands (miRs) that were overlapped by and on the same strand as ‘host’ genes, we compiled a general

miR-gene resource from GRCh38/hg38 GFF3 files for Ensembl v94 genes and miRBase v22.1 miRNAs, using the rtracklayer

v1.42.2 R package (Lawrence et al., 2009), in R v3.5.3. In using GRCh38 annotations, we recognized that the GRCh37/hg19

TCGA RSEM gene expression data would be unavailable for some Ensembl genes, but we prioritized using current miRNA annota-

tions and (largely) current gene annotations and biotypes (https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020). To

report Spearman correlations between hosted miRs and host genes, we used Pan-cancer, batch-corrected, normalized GRCh37

expression data for 20,531 RSEM genes and 743 expressed mature strands (https://gdc.cancer.gov/about-data/publications/

pancanatlas). Given our GRCh38-based annotation/overlap resource, these data supported calculating correlations for 203 host

genes and 331 hosted miRs.

Ancestry associated SNPs and eQTLs
Association analyses were carried out using the Hail framework (https://github.com/hail-is/hail). We transformed the post-imputation

vcf files from the Michigan imputation server into Hail matrix format to speed up downstream analysis. Using the Haplotype Refer-

ence Consortium imputation calls, we performed further quality control analyses to filter out low-imputation confidence variants.

Common variants (MAF > 0.05) that had an imputation confidence score (r^2 > = 0.5) and did not violate Hardy-Weinberg equilibrium

assumption (Hail HWE test p > 0.05) were kept for association analysis. We also filtered out samples with call rates < 0.95 and ad-

mixed samples, leaving 8,696 samples and 8,551,986 SNPs for testing.

To identify SNPs associations with ancestry, we performed logistic regression analysis for EUR versus AFR and EUR versus EAS

(Hail Wald’s test implementation), including patient age and gender as covariates. For the set of genes with pan-cancer differential

mRNA expression associated with ancestry, we extracted pancanQTL cis- and trans-eQTLs from the pancanQTL resource (Gong

et al., 2018), and determined the number of eQTL pairs for each cancer-type in which the underlying SNP also showed a significant

association with ancestry (Wald’s test FDR q < 0.05) by merging tables across dbSNP identifiers.

Ancestry and pathways
The PARADIGM algorithm was used to integrate platform-corrected expression, gene-level copy number, and pathway interaction

data for 9829 TCGA Pan-Cancer samples to infer the activities of�19K pathway features (Vaske et al., 2010; Sedgewick et al., 2013).

The inferred activities, termed integrated pathway levels (IPLs), reflect the log likelihood of the probability that a given feature is acti-

vated (versus inactivated). Only samples with admixture proportions £ 20% were included, yielding 9046 evaluable samples.

Among the 33 tumor types, the 24 with 35 patients not of EUR ancestry were considered. Within each tumor type, we identified

pathway features with differential inferred activities between each ancestry group with 35 patients and the EUR group using t tests

andWilcoxon Rank sum tests. Three initial minimum variation filterswere applied prior to statistical testing: first, at least 1 sample with

absolute activity > 0.05; second, at least 10% of samples have non-zero activity; and third, standard deviation of activity > 0.05. Fea-

tures deemed significant (q < 0.05) by both tests and showing an absolute difference in group means > 0.05 were selected. The

selected pathway features were assessed for interconnectivity; and regulatory nodes with differential IPLs that also had at least

10 differential downstream regulatory targets were identified. We also evaluated whether DNA repair genes (Knijnenburg et al.,

2018) and known cancer pathway or driver genes (Sanchez-Vega et al., 2018; Bailey et al., 2018) were enriched among the selected

differential features by comparing the proportion of pathway genes selected against the proportion of total genes selected, using a

hypergeometric test with a Benjamini-Hochberg correction. Pathway gene sets were considered significantly enriched if there were

at least two members that were differential at q < 0.05.

Among the 24 included tumor types, 10 have subtype annotation; the above described analyses were also performed within tumor

subtypes. In addition, for each tumor type, we conducted a subtype-adjusted analysis by first fitting a linear model of each IPL as a

function of a binary matrix of subtype membership. The resulting residuals were then compared to identify ‘subtype-adjusted’ dif-

ferential features and key regulatory nodes as described above.
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