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Vitamin C deficiency is found in patients with cancer and might com-
plicate various therapy paradigms. Here we show how this defi-
ciency may influence the use of DNA methyltransferase inhibitors
(DNMTis) for treatment of hematological neoplasias. In vitro, when
vitamin C is added at physiological levels to low doses of the DNMTi
5-aza-2′-deoxycytidine (5-aza-CdR), there is a synergistic inhibition of
cancer-cell proliferation and increased apoptosis. These effects are
associated with enhanced immune signals including increased ex-
pression of bidirectionally transcribed endogenous retrovirus (ERV)
transcripts, increased cytosolic dsRNA, and activation of an IFN-
inducing cellular response. This synergistic effect is likely the result
of both passive DNA demethylation by DNMTi and active conversion
of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by
ten–eleven translocation (TET) enzymes at LTR regions of ERVs, be-
cause vitamin C acts as a cofactor for TET proteins. In addition, TET2
knockout reduces the synergy between the two compounds. Further-
more, we show that many patients with hematological neoplasia are
markedly vitamin C deficient. Thus, our data suggest that correction
of vitamin C deficiency in patients with hematological and other
cancers may improve responses to epigenetic therapy with DNMTis.
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Alterations in DNA methylation are among the earliest and most
common events during tumorigenesis (1). De novo methylation

of CpG island promoters silences tumor suppressors in cancer and can
be viewed as an alternative to genetic mutation in inactivating such
important regulators. Because of its dynamic nature, DNA methyl-
ation is attractive as a therapeutic target for Food and Drug Admin-
istration-approved DNA methyltransferase inhibitors (DNMTis)
such as 5-aza-2′-deoxycytidine (5-aza-CdR) or 5-azacytidine (5-aza-
CR). These nucleosides are incorporated into the DNA of pro-
liferating cells during S phase and inhibit cytosine methylation by
trapping DNA methyltransferases (DNMTs) onto the DNA, lead-
ing to their proteolysis (2–4). Demethylation occurs via subsequent
passive dilution during DNA replication; the eventual restoration of
normal DNMT levels leads to remethylation of CpG sites (5, 6).
DNMTis have exhibited significant success in the treatment

of hematological malignancies such as myelodysplastic syndrome
(MDS) and acute myeloid leukemia (AML) (7–11). It has been
proposed that the molecular mechanisms underlying such efficacy
involve demethylation of tumor-suppressor gene promoters and
oncogene bodies, thereby restoring more normal expression levels
(1, 6). Recently, we found that inhibiting DNA methylation by
5-aza-CdR causes up-regulation of endogenous retroviruses (ERVs)
and induces an IFN response, which may be responsible for apo-
ptosis and sensitization to subsequent immune checkpoint therapy
(12, 13). This response has been called “viral mimicry” because the
cell responds as it would to an exogenous viral infection.
Only about 50% of patients with MDS or AML respond to 5-aza-

CdR alone (14, 15), so recent clinical trials are exploring combinations
with conventional chemotherapy or immune checkpoint therapy

(12, 16, 17). To improve the clinical efficacy of DNMTis, we ex-
plored a combination of physiological levels of vitamin C with
low-dose 5-aza-CdR. Vitamin C is a cofactor for the Fe(II)
2-oxoglutarate dioxygenase family, exemplified by the three
ten–eleven translocation (TET) enzymes (18), which convert
5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC)
(19, 20). In addition, 5hmC depletion in a variety of human cancers
suggests decreased TET activity in cancer cells (21). The addition of
vitamin C to ES cells promotes DNA demethylation through in-
creased TET activity (18, 22). We hypothesized that combination
treatment of 5-aza-CdR plus vitamin C would lead to improved ef-
ficacy against cancer cells, possibly by pharmacological inhibition of
DNMTs by 5-aza-CdR and activation of TET enzymes by vitamin C.

Results
Vitamin C at Physiological Levels Enhances the Apoptotic Effects of
5-aza-CdR. Virtually all culture media lack vitamin C. We there-
fore examined whether daily supplementation of vitamin C at
physiological levels in five cancer cell lines would alter the outcome
of DNMTi treatment. Previous studies showed that transient (24-h)
exposure of proliferating cells to 5-aza-CdR at 20–300 nM leads to
long-term growth inhibition that mimics the prolonged patient re-
sponses seen in clinical settings (23–25). We tested various con-
centrations of 5-aza-CdR and vitamin C alone and in combination
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(SI Appendix, Fig. S1A). With HCT116 colorectal carcinoma cells,
5-aza-CdR alone showed the expected dose-dependent toxicity
between 75 and 600 nM, with about 65% inhibition of cell growth
at the highest concentration. Vitamin C alone at concentrations up
to 57 μMhad little effect on cell growth but was toxic at 228 μM (SI
Appendix, Fig. S1B), in line with recent studies of high vitamin C
concentrations (125–2,000 μM) (26, 27). In our combination ap-
proach, vitamin C increased the effects of low doses of 5-aza-CdR,
with 57 μM vitamin C almost doubling the growth inhibition. Using
the Chou–Talalay method (28), we found that the two compounds
indeed acted synergistically, rather than additively, to inhibit cancer
cell growth over the physiological ranges of vitamin C in healthy
individuals (26–84 μM) (SI Appendix, Fig. S1C).
We selected four other cancer cell lines: HL60 (acute myeloid

leukemia), MCF7 (breast carcinoma), and SNU398 and HepG2
(hepatocellular carcinomas) for further analysis. HCT116 and
HL60 cells were treated with 300 nM 5-aza-CdR for 24 h, and
MCF7, SNU398, and HepG2 cells were treated with three con-
secutive daily doses of 5-aza-CdR at 100 nM for 72 h to com-
pensate for the fact that incorporation of the drug is dependent
on cell-doubling time (5, 24). Prolonged increases in population-
doubling times occurred in all cell lines, with peaks at 8–15 d after
5-aza-CdR treatment (Fig. 1A). The daily addition of vitamin C at
57 μM further lengthened the population-doubling times (Fig.
1A). The increased doubling time was correlated with enhanced
apoptosis, as determined by annexin V measurements using flow
cytometry (Fig. 1B). We observed a 1.5- to 2.2-fold increase in
apoptosis with combination treatment relative to 5-aza-CdR
treatment alone; daily vitamin C treatment alone increased apo-
ptosis only slightly (Fig. 1B). Further analysis confirmed a synergy
between vitamin C and 5-aza-CdR in inducing apoptosis in all
these cell lines (SI Appendix, Fig. S1D).
Both 5-aza-CdR and vitamin C at high doses (in the micromolar

and millimolar range, respectively) cause cytotoxicity by damaging

DNA, as evidenced by a robust increase in phosphorylation of
the histone variant H2AX at serine 139 (γ-H2AX) and an increase
in p53 (27, 29). However, daily vitamin C alone at 57 μM did not
increase the γ-H2AX or p53 levels in HCT116 cells (SI Appendix,
Fig. S2), and 5-aza-CdR treatment increased them only slightly.
Moreover, the combination treatment did not increase these levels
further over 5-aza-CdR alone (SI Appendix, Fig. S2), suggesting
that the apoptosis induced by combination treatment was not
caused by DNA damage.

Combination Treatment of Vitamin C and 5-Aza-CdR Up-Regulates
Endogenous Viral-Defense Genes. We next used gene-expression
microarrays to screen for early changes in gene expression at day
5 after treatment, before the peak of apoptosis. Although few genes
were down-regulated (SI Appendix, Fig. S3), genes responsive to
IFN-α and -γ were consistently up-regulated by combination treat-
ment (relative to 5-aza-CdR alone) in HCT116, HL60, and SNU398
cells (Fig. 2A and SI Appendix, Fig. S3). These up-regulated genes
are involved in dsRNA recognition in the cytoplasm, participating
in viral recognition and defense, IFN signaling, apoptotic signaling,
and antigen presentation (Fig. 2A). We and others have shown that
these viral defense-related genes can be up-regulated by 5-aza-CdR
treatment and are responsible for inducing apoptosis in cancer cells
(12, 13). Similarly, up-regulation of these genes by combination
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Fig. 1. The combination of 5-aza-CdR and physiological levels of vitamin
C inhibits cell growth and enhances apoptosis. (A) Population-doubling time
after treatment with PBS, vitamin C, 5-aza-CdR, or the combination. HCT116
and HL60 cells were treated with one dose of 300 nM 5-aza-CdR for 24 h;
MCF7, SNU398, and HepG2 cells were treated with three consecutive daily
doses of 5-aza-CdR at 100 nM, with drug withdrawal at 72 h. All cells were
treated with daily doses of 57 μM vitamin C. Values are mean ± SD of three
independent experiments. *P < 0.05 by paired Student’s t test comparing
combination vs. 5-aza-CdR treatment. (B) Apoptosis analysis showing an
increased percentage of apoptotic cells after combination treatment relative
to either 5-aza-CdR or vitamin C alone. Cells were stained with annexin
V-FITC and PI and were analyzed by flow cytometry.
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Fig. 2. Combination treatment of vitamin C and 5-aza-CdR up-regulates
viral-defense genes. (A) Comparison of the expression of IFN-responsive
genes upon combination treatment vs. 5-aza-CdR treatment in HCT116, HL60,
and SNU398 cells. Treatment was as described in Fig. 1A. Transcripts were
analyzed by microarray at 5 d after treatment. Orange indicates genes up-
regulated in at least two cell lines (genes are listed at the right); gray denotes
genes up-regulated in only one line. (B) A log2 plot of the expression of
dsRNA defense genes after treatment with vitamin C, 5-aza-CdR, or their
combination vs. untreated HCT116 cells. Values are calculated from frag-
ments per kilobase per million fragments mapped and are averaged from
two independent RNA-seq datasets.
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treatment may cause the increased apoptosis seen with combi-
nation treatment compared with 5-aza-CdR treatment alone.
We explored this possibility further by quantitation with RNA-

sequencing (RNA-seq) in HCT116 cells. 5-Aza-CdR treatment
alone up-regulated the viral-defense genes four- to 64-fold in
HCT116 cells (Fig. 2B and SI Appendix, Fig. S4), as previously
reported (12, 13, 24, 30). Daily vitamin C treatment alone in-
creased the expression of these genes two- to fourfold relative to
untreated cells (Fig. 2B and SI Appendix, Fig. S4), whereas the
transcription of most housekeeping genes remained stable (SI
Appendix, Fig. S5A). All the viral-defense genes were up-regulated
further (up to 128-fold) by the combination treatment (Fig. 2B
and SI Appendix, Fig. S4), but the expression of housekeeping
genes was comparable to that under 5-aza-CdR treatment alone
(SI Appendix, Fig. S5A). However, cytosolic sensors for DNA and
Toll-like receptors that recognize viral DNA/RNA in endosomes
were not up-regulated by any treatment (SI Appendix, Fig. S5B).
Vitamin C and 5-aza-CdR therefore synergistically up-regulate
the cytosolic viral RNA defense pathways, strengthening the viral
mimicry state produced by DNMTi treatment alone (12, 13).

Combination Treatment of Vitamin C with 5-Aza-CdR Up-Regulates
Endogenous Retroviruses in dsRNA Forms. It is still unknown to what
extent DNMTis up-regulate ERV transcripts genome-wide, which
is key for triggering a viral-defense response. We analyzed the
transcripts mapping uniquely to ERV loci (which are not covered
by the expression array) in two replicates of the RNA-seq data for
HCT116 cells after vitamin C, 5-aza-CdR, or combination treat-
ment. The percentage of ERV transcripts relative to total reads
did not change after vitamin C treatment but increased in cells
treated with 5-aza-CdR and increased further with combination
treatment (SI Appendix, Fig. S6A). The total reads for the ERV-1,
ERVL, and ERVL-MaLR (mammalian apparent LTR retroposon)
subfamilies were increased by both 5-aza-CdR and combination
treatment, whereas the ERVK family was down-regulated relative
to PBS controls (SI Appendix, Fig. S6B). Expression of other ret-
rotransposons, such as the long interspersed nuclear elements
(LINEs) and short interspersed nuclear elements (SINEs), was also
increased by 5-aza-CdR and combination treatment; the expression
levels of low-complexity repeats, simple repeats, tRNA, and small
cytoplasmic RNAs remained stable (SI Appendix, Fig. S6A).
We then asked whether the up-regulated ERVs whose LTRs

possess bidirectional promoter activities (31, 32) could form
dsRNA secondary structures. Using directional RNA sequencing
methods, we detected some unidirectionally transcribed ERVs
(e.g., HERV-Fc1, HERV-Fc2, and MLT1E1A) as well as some
transcribed bidirectionally (e.g., LTR5, LTR26, PRIMA41, and
LTR12C) (Fig. 3A and SI Appendix, Fig. S6C). To test whether bi-
directionally transcribed ERVs physically formed dsRNA secondary
structures, we used the J2 antibody (33) specifically to pull down
transcripts containing dsRNAs (Fig. 3 B–D). Remarkably, the com-
bination treatment greatly increased the expression of ERVs as
dsRNAs relative to 5-aza-CdR or vitamin C treatment alone (Fig.
3 B and C). In addition, the 50 most abundant bidirectionally tran-
scribed ERVs largely overlapped with the ERVs that formed
dsRNAs (Fig. 3D). LTR12C, which has more than 2,500 copies
present in the human genome, was the most abundant dsRNA up-
regulated by combination treatment in HCT116 cells (Fig. 3 A and
C). Finally, transfection of polyinosinic:polycytidylic acid [poly(I:C)],
which mimics the presence of dsRNA, up-regulated viral-defense
genes in HCT116 cells to a similar extent as the combination treat-
ment (SI Appendix, Fig. S7). Thus ERVs up-regulated as dsRNA by
the combination treatment may be responsible for triggering a strong
IFN response and for inducing apoptosis in cancer cells.

Combination Treatment Promotes 5hmC Production at ERV LTRs.Because
vitamin C is a cofactor for TET proteins (18, 22), we performed dot
blot analysis with a 5hmC antibody to test whether vitamin C or

combination treatment altered the global levels of 5hmC. Vitamin C
treatment increased 5hmC in all five cell lines, with the biggest re-
sponse seen in MCF7 cells (Fig. 4A). Combination treatment further
increased 5hmC by about twofold relative to vitamin C treatment
in all but MCF7 cells (Fig. 4A), in which combination treatment re-
sulted in 5hmC levels comparable to those of vitamin C treatment
alone (Fig. 4A). This result might be explained by the very high
expression of TET2 and TET3 in the MCF7 cell line (SI Appendix,
Fig. S8). In general, in most cell lines the expression of the three
TET genes was unaffected by vitamin C, 5-aza-CdR, or the com-
bination treatment (SI Appendix, Figs. S5C and S8). Therefore in-
creased 5hmC by vitamin C and combination treatments was most
likely caused by increased TET enzyme activity.
Sodium bisulfite treatment is considered the gold standard for

measuring DNA methylation, but it cannot distinguish between
5hmC and 5mC and therefore actually measures the sum of
both modified bases. We examined the “modification” status (i.e.,
5mC+5hmC) of DNA extracted before and after treatment on the
Infinium HM450 DNA methylation BeadChip platform that is
based on sodium bisulfite treatment. However, at 5 d after treat-
ment we did not observe pronounced cytosine modification changes
induced by vitamin C or by combination treatment as compared
with 5-aza-CdR treatment (SI Appendix, Fig. S9A).
Because the HM450 BeadChip platform contains few repetitive

elements such as ERVs, this result does not preclude localized
decreases in cytosine modifications elsewhere in the genome. We
next assessed dynamic 5hmC changes at ERV genomic loci, using
biotin-based enrichment of 5hmC followed by sequencing on days
1 and 5 after treatment. The levels of 5hmC in untreated and 5-aza-
CdR–treated cells were too low to allow successful sequencing.
Notably, ERVs up-regulated by combination treatment gained high
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5hmC levels on day 1 which were reduced by twofold on day 5 after
the treatment (Fig. 4B and SI Appendix, Fig. S10). Vitamin C
treatment also transiently increased the presence of 5hmC on day 1,
but the levels were lower than seen with combination treatment
(Fig. 4B and SI Appendix, Fig. S10). Quantitative PCR showed that
the highest 5hmC levels appeared at the LTRs of HERV-Fc1 and
HERVW1 on day 1 and gradually decreased on days 3 and 5 after
combination treatment (Fig. 4C), whereas the expression of ERVs
increased from day 1 to day 5 after the treatment (Fig. 4D). Re-
duction of 5hmC on day 5 may be caused by the loss of 5mC
substrates after inhibition of DNMTs. These data also confirmed
the global analysis shown in Fig. 4B. In contrast, 5hmC levels were
increased only slightly by vitamin C treatment but did not change
with 5-aza-CdR treatment (Fig. 4C). We next examined cytosine
modification patterns in the HERV-Fc1 5′ LTR by bisulfite se-
quencing on day 5 after treatment (SI Appendix, Fig. S9B). No
changes were induced by vitamin C or by combination treatment
as compared with cells treated with 5-aza-CdR (SI Appendix,
Fig. S9B). Further loss of cytosine modifications by combina-
tion treatment was not seen, suggesting that the presence of
5hmC at the ERV LTRs may directly facilitate the transient up-
regulation of these ERVs.
It is worth noting that the effects of vitamin C on 5hmC pro-

duction and ERV up-regulation could also be achieved by treatment
with dehydroascorbic acid (DHA) (Fig. 5), the oxidized form of
vitamin C. Therefore, as previously reported (26), it is possible that
vitamin C was oxidized to DHA before it was transported into the
cells. On the other hand, other antioxidants such as glutathione
(GSH) or DTT were unable to elicit the same effects (Fig. 5).

TET2 Knockout Reduces the Expression of ERVs upon Combination
Treatment. Because TETs are the only known enzymes that oxi-
dize 5mC to 5hmC, we reasoned that the effects of vitamin C may
be mediated by TET proteins. To test this hypothesis, we used a
TET2-KO cell line established by CRISPR/Cas9 technology in
A2780 human ovarian carcinoma cells (SI Appendix, Fig. S11). The
global levels of 5hmC were about four- to eightfold lower in TET2-
KO cells than in the wild-type A2780 cells after vitamin C or
combination treatment (Fig. 6A), indicating that knocking out
TET2 substantially decreases 5hmC levels in A2780 cells. Further-
more, we observed a significant reduction of HERV-Fc1 and
LTR12C expression in TET2-KO cells compared with wild-type
A2780 cells after combination treatment (Fig. 6B). Therefore the
effects of vitamin C on ERV expression in A2780 cells are mediated
in part by TET2 protein. Other TET proteins also might compen-
sate for the loss of TET2, because an up-regulation of 5hmC and
ERV expression was observed after combination treatment in the
KO cells, although the effect was less than that seen in the wild-type
A2780 cells (Fig. 6B). Interestingly, knocking out TET2 also re-
duces the expression of LTR12C after 5-aza-CdR treatment (Fig.
6B). It is possible that TET2 may still have weak activity in wild-type
A2780 cells cultured in McCoy’s 5A medium with a low vitamin C
concentration (2.9 μM) and may partly contribute to the effects of
5-aza-CdR alone.

Patients with Hematological Neoplasia Are Often Markedly Vitamin C
Deficient. These results show that targeting the cancer DNA meth-
ylome by combining low-dose 5-aza-CdR and vitamin C stimulates
the expression of ERVs, the induction of a cell-autonomous immune
activation response, and increased apoptosis of cancer cells. The lack
of vitamin C in a patient’s plasma might cause a poor response to
DNMTi treatment in some patients. We therefore measured plasma
concentrations of vitamin C in a small number of patients with
miscellaneous hematologic malignancies. Strikingly, 58% of patients
with hematological neoplasia who were not taking vitamin C sup-
plements had severe vitamin C deficiency (serum concentration
<11.4 μM, at which clinical features of scurvy may be manifested)
(34), and 33% had vitamin C levels below the normal range (Fig. 7
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(A) Dot blot analysis of global 5hmC levels in cancer cells on day 5 after treat-
ment with an antibody against 5hmC. (B) Genomewide analysis of 5hmC at up-
regulated ERV loci in HCT116 cells on days 1 and 5 after vitamin C and combi-
nation treatment. The top 100 most up-regulated ERVs after combination
treatment compared with untreated cells were identified by RNA-seq, and 5hmC
enrichment and were analyzed using the Hydroxymethyl Collector Kit (Active
Motif) followed by next-generation sequencing. (Upper) The heat map shows
the expression levels of individual ERVs in the unit of natural log read counts.
(Lower) The average base counts of 5hmC reads at all ERV loci and their ± 3-kb
flanking region. (C, Lower) Quantification of 5hmC in HCT116 cells at LTRs of
ERVs on days 1, 3, and 5 after treatment by qPCR. (Upper) Primer design. The
promoter region of β-actin (ACTB) was used as a negative control. Values are
presented as mean ± SD of five independent experiments. *P < 0.05 by Student’s
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and SI Appendix, Table S1). In this small sample, no specific pattern
was observed with respect to patient age, disease state, or treatment
status. In contrast, only 7.1% of the United States population was
found to be deficient in vitamin C according to the 2003–2004 Na-
tional Health and Nutrition Examination Survey (NHANES) (34).
Vitamin C deficiency has been seen previously in patients with
multiple types of cancer, including hematological malignancies (35–
37). We predict that these patients might receive the most benefits
from the combination treatment.

Discussion
Our work shows a remarkable synergy between an inhibitor of
DNA methylation and a stimulator of the TET enzymes that
catalyze the conversion of 5mC to 5hmC. We show that the
combination establishes a viral mimicry response by the up-regu-
lation of endogenous retroviruses, including dsRNA production,
and induction of an innate immune response. These events are

relevant to apoptosis and the targeting of cancer stem cells by
DNMTis (12, 13). The addition of vitamin C to treatment pro-
tocols therefore may be a straightforward way to increase the
clinical efficacy of such drugs in MDS and leukemia patients (7,
9–11, 24). Oral administration of vitamin C should be sufficient for
the therapeutic strategy, because the concentrations reported in
this study would not require i.v. administration.
Vitamin C is an essential nutrient for humans and has been

reported to increase IFN levels in human cells upon virus infection
(38).Gulo−/−mice, which are unable to synthesize vitamin C, exhibit
a significant reduction in IFN-α/β production (39). In our study,
daily treatment with vitamin C alone at physiological concentrations
enhanced the expression of viral-defense genes relative to untreated
cells. When combined with low-dose 5-aza-CdR, physiological con-
centrations of vitamin C synergistically inhibited cancer-cell growth
and induced apoptosis. Such synergy was associated with in-
creased ERV expression and dsRNA in treated cells. The mech-
anism of action differs from that of vitamin C at higher doses,
which involves its pro-oxidant activity, including GSH inhibition,
to generate reactive oxygen species (40). This activity has been
shown to induce DNA damage and to enhance the sensitivities of
myeloid malignancies, multiple myeloma, and cutaneous T-cell
lymphoma to arsenic trioxide (41–44). It also can increase che-
mosensitivity of ovarian cancer cells (27) and selectively kill
KRAS or BRAF mutant colorectal cancer cells by inhibiting
GAPDH (26).
Our data suggest a mechanism involving both pharmacological
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demethylation) and the activation of TET proteins by vitamin C
(inducing 5hmC production at LTRs of ERVs). The transcription
of repetitive elements including ERVs is mainly silenced by DNA
methylation (32, 45). Dnmt3a and/or Dnmt3b have been found to
be specifically responsible for maintaining the methylation pat-
terns of endogenous repetitive regions in mouse ES cells (46, 47).
Therefore, pharmacological knockdown of DNMTs by 5-aza-CdR
may allow TET proteins to be recruited to these regions when
activated by vitamin C, oxidizing the 5mC residues into 5hmC and
resulting in the up-regulation of repetitive-element expression.
Consistent with this model, the highest level of 5hmC at the LTRs
of both HERV-Fc1 and ERVW1 was found on day 1 after com-
bination treatment (Fig. 4C), when most DNMTs have been de-
graded (4, 48). Indeed, this model is strengthened further by the fact
that TET2 knockout reduces the synergistic effect of up-regulation
of ERVs. The presence of 5hmC at the LTRs may be sufficient to
allow transcription, since strong ERV expression was seen even
though the overall cytosine modifications (5mC+5hmC) were un-
changed after the combination treatment.
The finding that cancer patients are often vitamin C deficient and

have less 5hmC in their tumors may suggest important roles for this
vitamin in cancer prevention and treatment. In many types of can-
cers, 5hmC is greatly depleted or even lost completely (21). Fur-
thermore, genetic mutations affecting enzymes regulating DNA
methylation (DNMT3A/B, TET2, and IDH 1/2) contribute to al-
tered 5mC/5hmC patterns, as observed in a subgroup of AMLs (21).
Further study is warranted to determine whether vitamin C defi-
ciency causes low 5hmC levels in cancers either with or without
mutations in DNA methylation regulators. Based on preclinical
studies, vitamin C deficiency in cancer patients also might complicate
established therapeutic paradigms, because humans cannot synthe-
size vitamin C (39). In addition, most cells cultured in vitro are
vitamin C deficient; this deficiency should be considered when
interpreting the results of preclinical studies.
Our results show that supplementation with vitamin C can boost

the outcome of DNMTi treatment of cancer cells in vitro. Clinical
trials are needed to determine whether such supplements will
enhance the therapeutic responses in patients treated with DNMTis.
We also expect that the combination may provide a better response
to immune checkpoint therapy, because high basal levels of viral-
defense genes correlate with better clinical outcomes after anti-
CTL4 immune checkpoint therapy (12, 49).

Materials and Methods
Participants. Twenty-four patients diagnosed with hematological malig-
nancies from Department of Hematology, Rigshospitalet, Copenhagen
University Hospital, Denmark, were randomly selected for measurement of
plasma vitamin C levels (details are listed in SI Appendix, Table S1). The study
was approved by the Regional Ethical Committee, Capital Region of Den-
mark, and all participants provided written informed consent before en-
rollment. Detailed description of the materials and methods used in this
study are provided in SI Appendix, SI Materials and Methods.

Cell Culture. HCT116 (ATCC no. CCL-247), HL60 (ATCC no. CCL-240), MCF7
(ATCC no. HTB-22), SNU398 (ATCC no. CRL-2233), and HepG2 (ATCC no. HB-
8065) cells were obtained from the American Type Culture Collection (ATCC;
https://www.atcc.org/). A2780 and TET2-KO cells were obtained from the S.B.B.
laboratory. Mutations contained in these cell lines are listed as Dataset S1.
Information about cell culture, cell viability assays, and evaluation of combi-
nation effects are described in SI Appendix, SI Materials and Methods.

Drug Treatment and Measurement of Cell-Doubling Time. HCT116 and HL60 cells
were untreated or treated with a daily dose of 57 μM vitamin C, with 300 nM
5-aza-CdR for 24 h, or with the combination of daily vitamin C at 57 μM and
transient exposure to 5-aza-CdR for 24 h. For MCF7, SNU398, and HepG2 cells,
5-aza-CdR treatment was performed with three daily consecutive doses at
100 nM (72-h exposure). Cell-doubling time was calculated as previously
reported (13) and is described in SI Appendix, SI Materials and Methods.

Apoptosis Assay. Cellular apoptosis was measured by annexin V and propidium
iodide (PI) staining using the annexin V-FITC apoptosis detection kit (MBL)
according to the manufacturer’s protocol. After staining, the cells were ana-
lyzed by a MoFlo Astrios Cell Sorter (Beckman Coulter, Inc.). Annexin V-FITC
staining indicated apoptotic cells.

Microarray Gene-Expression Analysis.Gene-expression analysis was performed
at Sanford–Burnham Medical Institution, La Jolla, CA using the Illumina
genome-wide expression BeadChip (HumanHT-12_V4.0_R1) (Illumina). Gene-
expression data were normalized using the quantile normalization method
with the lumi package, and differential expression analyses were performed
using the limma package in R.

RNA-Seq. For total RNA-seq with rRNA reduction and dsRNA sequencing,
libraries were sequenced as single-end 75 bases on a NextSeq 500 instrument
(Illumina) at the Van Andel Research Institute Genomics Core. For directional
RNA-seq with rRNA reduction and strand specificity retained, libraries were
prepared and sequenced as paired-end 50 bases on a HiSeq 2500 instrument
(Illumina) at HudsonAlpha Institute for Biotechnology Genomic Services
Laboratory. Details of J2 antibody pull-down, RNA-seq library preparation,
and data processing are described in SI Appendix, SI Materials and Methods.

Dot Blot Analysis and Chemical Pulldown of 5hmC. Dot blot analysis of 5hmC
was performed as described previously (18). Chemical capture of 5hmC was
performed using the Hydroxymethyl Collector Kit (Active Motif, 55013)
according to the manufacturer’s protocol with minor modifications described
in SI Appendix, SI Materials and Methods.
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