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tion (Supplementary Note 1). TransVar revealed hidden inconsis-
tency in these variant annotations by comprehensively identifying 
alternative annotations in all available transcripts in standard HGVS 
nomenclature, and thus  demonstrated greater consistency in this 
experiment than achieved with other annotators.

TransVar’s reverse annotation can be used to ascertain whether two 
protein variants have an identical genomic origin, thereby reducing 
inconsistency in annotation data. It can also show whether a protein 
variant has non-unique genomic origins and requires caution in 
genetic and clinical interpretation. We reverse-annotated the protein-
level variants in COSMIC and found that even under the constraints 
imposed by the reference base or AA identity, a sizeable fraction (for 
example, 11.9% of single-AA substitutions) were associated with 
multiple genomic variants (Supplementary Table 2), if transcripts 
were not specified. Among 537 variants cited as clinically actionable 
on the MD Anderson Cancer Center’s Personalized Cancer Therapy 
website (https://pct. mdanderson.org/#/), 78 (14.5%) (for example, 
CDKN2A:p.R87P and ERBB2:p.L755_T759del) could be mapped to 
multiple genomic locations (Supplementary Table 3). The reverse-
annotation functionality also enabled systematic genomic charac-
terization of variants directly identified from proteomic or RNA-seq 
data. For example, with just a few minutes of computing time we were 
able to identify the putative genomic origins of 187,464 (97.69%) pro-
tein phosphorylation sites (for example, p.Y308/p.S473 in AKT1 and 
p.Y1068/p.Y1172 in EGFR) in human proteins6.

Using the forward- and reverse-annotation features in TransVar can 
reveal hidden inconsistency and improve the precision of translational 
and clinical genomics. The tool (methods provided in Supplementary 
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To the Editor: To facilitate standardization and reveal inconsisten-
cies in existing variant annotations, we have designed a novel vari-
ant annotator, TransVar (http://www.transvar.net), to perform three 
main functions supporting diverse reference genomes and transcript 
databases (Fig. 1a): (i) forward annotation, which annotates all poten-
tial effects of a genomic variant on mRNAs and proteins; (ii) reverse 
annotation, which traces an mRNA or protein variant to all potential 
genomic origins; and (iii) equivalence annotation, which, for a given 
protein variant, searches for alternative protein variants that have an 
identical genomic origin but are represented on the basis of different 
isoforms. No robust solutions currently exist for reverse and equiva-
lence annotation, which leads to difficulty in interpreting variants at 
the protein or mRNA level.

One DNA sequence can code for multiple different mRNAs, and 
therefore many different proteins. Conversely, a variant identified 
at the protein or mRNA level may have a non-unique genomic ori-
gin. For example, the protein variant EGFR:p.L747S, which mediates 
acquired resistance of non–small cell lung cancer to tyrosine kinase 
inhibitors1, can be translated from multiple genomic variants such 
as chr7:g.55249076_55249077delinsAG and chr7:g.55242470T>C 
on different isoforms defined on the human reference assembly 
GRCh37 (Fig. 1a). One-to-many, many-to-one and many-to-many 
relationships among sequence variants at the genomic level and those 
at transcript and protein levels introduce frequent inconsistencies 
in current practice when vital information 
about the annotation process (for example, 
transcript or isoform I.D.s) is omitted from 
variant identifiers.

To demonstrate the degree of inconsis-
tency in existing variant data and to evaluate 
TransVar’s forward-annotation functionality, 
we annotated 964,132 unique single-nucleo-
tide substitutions (SNSs), 3,715 multinucleo-
tide substitutions (MNSs), 11,761  insertions 
(INSs), 24,595 deletions (DELs) and 166 
block substitutions (BLSs) in the Catalogue 
of Somatic Mutations in Cancer (COSMIC; 
v67) using TransVar, ANNOVAR2, VEP3, 
snpEff4 and Oncotator5 and asked whether 
the resulting protein identifiers (gene name, 
protein coordinates and reference amino 
acid (AA)) matched those in COSMIC. We 
observed comparable consistency in SNSs 
and MNSs but variable consistency in INSs, 
DELs and BLSs from different annota-
tors (Fig. 1b, Supplementary Table 1 and 
Supplementary Note 1). The inconsisten-
cies could be attributed largely to a lack of 
standardization among variant annota-
tions (codon or AA positions) submitted to 
COSMIC and among conventions imple-
mented in various annotators. Inconsistency 
in annotations blurred the lines of evidence 
for variant-frequency estimation and led to 
inaccurate determinations of variant func-

Figure 1 | Overview of TransVar and comparison with other annotation tools. (a) TransVar performs forward 
(green arrows) and reverse (pink arrows) annotation and considers all possible mRNA or protein isoforms 
available in the user-specified reference genome and transcript databases (colored boxes represent exons). 
Given a genomic, mRNA or protein variant at one level (black triangles), TransVar can infer associated 
variants at the other two levels. In reverse annotation, TransVar searches all potential transcripts and 
reports one variant on each relevant transcript. When there are multiple variants on the same transcript, 
TransVar reports the variant with minimal nucleotide changes (red text) in addition to alternatives (purple 
text). (b) Consistency of forward annotation among annotation tools. Consistency is represented by the 
percentage of variants matching protein annotations in COSMIC v67 based on 964,132 unique SNSs, 3,715 
MNSs, 11,761 INSs, 24,595 DELs and 166 BLSs. NA, protein-level annotations not available.
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enriched GO terms associated with abundant proteins, rather than 
modified proteins specifically.

We mapped thousands of serine and threonine phosphorylation, 
lysine (N-e) ubiquitylation, lysine (N-e) acetylation and lysine (N-e) 
succinylation sites in yeast (Saccharomyces cerevisiae) and human 
cervical cancer (HeLa) cells (Supplementary Tables 1 and 2 and 
Supplementary Methods). Ubiquitylation, acetylation and succinyl-
ation were significantly biased toward detection on abundant proteins 
present in our samples (Fig. 1a and Supplementary Fig. 1a), although 
it is also possible that some of the most abundant proteins were not 
biochemically accessible or present in the cell types analyzed. 

We developed a method to account for this abundance bias. 
GO-term enrichment analysis of PTMs typically involves the use of 
a statistical test to find significant differences in the frequency of GO 
terms associated with modified proteins relative to their frequency 
for the genome or the experimentally observed proteome. To com-
pare modified proteins with an appropriate control group, we applied 
a protein-abundance-based correction factor to the GO-term asso-
ciations for the observed proteome. In brief, proteins were binned 
according to their abundance, and the frequency of GO-term asso-
ciation in each bin was weighted on the basis of the fraction of modi-
fied proteins in each bin (Supplementary Methods). We developed 
an open-source, publically accessible web tool, A.GO.TOOL (https://
agotool.sund.ku.dk), to perform these analyses.

Using this tool we performed GO-term and UniProt-keyword 
(KW) enrichment, comparing modified proteins with the genome, 
observed proteome and abundance-corrected (corrected) pro-
teome (Fig. 1b and Supplementary Data Set 1). Relative to results 
for the genome and observed proteome, the number of significantly 
(P < 0.01) enriched GO terms and KWs was decreased when we used 
the corrected proteome (Fig. 1b and Supplementary Fig. 2). This 
reduction was partly attributed to the comparatively small sample 
size of the corrected proteome (Supplementary Fig. 3). Detection of 
phosphorylation was not abundance-biased in HeLa cells (Fig. 1a); 
therefore, we attributed the reduced association of GO terms and KWs 
with the corrected proteome (Fig. 1b) mostly to the sample size in 
those analyses (Supplementary Fig. 3). The abundance-corrected 
analysis identified overrepresented (enriched) and underrepresented 
GO terms and KWs describing specific functions for PTMs, such as 
“transcription” for acetylation and “proteasome” for ubiquitylation 
(Fig. 1c), as well as organism-specific associations such as prominent 
enrichment of membrane-linked terms for ubiquitylation in yeast 
(Fig. 1c). Succinylation was not enriched for any GO terms or KWs 
in yeast, regardless of the sample size (Fig. 1b and Supplementary 
Fig. 3). This striking result is consistent with untargeted, nonenzy-
matic succinylation2,3. An independent analysis of bacterial acetyla-
tion similarly showed no significantly enriched GO terms4, consistent 
with prominent nonenzymatic acetylation in bacteria5. Acetylation 
can occur nonenzymatically in eukaryotes2,6,7, and it is also cata-
lyzed by acetyltransferases that primarily regulate gene transcription. 
After correcting for abundance bias, we found that GO terms and 
KWs describing transcription and related processes were significantly 
enriched for acetylated proteins in yeast and HeLa cells (Fig. 1d,e and 
Supplementary Data Set 1). In contrast, KWs associated with cen-
tral metabolism were not significantly enriched in analyses using the 
corrected proteome (Fig. 1f), and the decreased significance was not 
attributed to sample size (Supplementary Fig. 4).

Previously published GO-enrichment analyses, including sev-
eral of our own and many not cited here, show that acetylation and 

Note 2) is available as a user-friendly web interface (http://www.trans-
var.net) or a downloadable version for batch analysis (Supplementary 
Software and https:// bitbucket.org/wanding/transvar).

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.3622).
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Avoiding abundance bias in the 
functional annotation of post-
translationally modified proteins

To the Editor: Identification of post-translational modifications 
(PTMs) by mass spectrometry is biased toward abundant proteins, 
skewing our understanding of PTMs in favor of readily detected pro-
teins. We developed a method and web tool (https://agotool.sund.
ku.dk) to account for this protein-abundance bias in Gene Ontology 
(GO)-term enrichment analyses of PTM data sets.

GO-term enrichment analysis is frequently used to examine 
‘-omics’ data sets for enriched functional terms in a subset of the data 
set, such as regulated genes or modified proteins1. Because the iden-
tification of PTMs is biased toward abundant proteins that are more 
readily detected in the mass spectrometer, GO-enrichment analyses 
comparing post-translationally modified proteins (referred to here 
as modified proteins) to unmodified proteins are likely to reveal 
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