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ABSTRACT

Motivation: Identifying subclonal mutations and their implications re-

quires accurate estimation of mutant allele fractions from possibly

duplicated sequencing reads. Removing duplicate reads assumes

that polymerase chain reaction amplification from library constructions

is the primary source. The alternative—sampling coincidence from

DNA fragmentation—has not been systematically investigated.

Results: With sufficiently high-sequencing depth, sampling-induced

read duplication is non-negligible, and removing duplicate reads can

overcorrect read counts, causing systemic biases in variant allele frac-

tion and copy number variation estimations. Minimal overcorrection

occurs when duplicate reads are identified accounting for their mate

reads, inserts are of a variety of lengths and samples are sequenced in

separate batches. We investigate sampling-induced read duplication

in deep sequencing data with 500� to 2000� duplicates-removed

sequence coverage. We provide a quantitative solution to overcorrec-

tion and guidance for effective designs of deep sequencing platforms

that facilitate accurate estimation of variant allele fraction and copy

number variation.

Availability and implementation: A Python implementation is freely

available at https://bitbucket.org/wanding/duprecover/overview.
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1 INTRODUCTION

Many somatic mutations, including known driver mutations, are

found in only a subset of tumor cells (Gerlinger et al., 2012).

Detecting the presence of these subclonal mutations and estimat-

ing their population size can critically affect the clinical diagnosis

and therapeutic intervention of individual cancer patients

(Farhangfar et al., 2013). This realization has led to the rapid

development of deep sequencing as a molecular diagnostic plat-

form in cancer clinics (Wagle et al., 2012). Estimating the variant

allele fraction (VAF) from somatic samples sheds light on the

intrinsic sample heterogeneity that originates from somatic muta-

tions, and hence the etiology of many diseases, particularly cancer

(Cibulskis et al., 2013; Ding et al., 2012; Nik-Zainal et al., 2012;

Shah et al., 2012). In addition, genomic regions (such as genes or

exons) may exist in different numbers of copies due to mutational

events such as duplication and deletion. This is referred to as copy

number variation. In oncology, comparisons between copy num-

bers of different genes or between copy numbers of the same gene

from different samples (normal versus tumor tissue, for instance)

disclose signs of any selective pressure driving tumorigenesis

(Dewal et al., 2010). Both tasks can be approached by counting

reads from next-generation sequencing (NGS) experiments

(Mardis, 2011).
In practice, read counting is complicated by amplification bias,

namely, the bias as a result of the preference of the polymerase

chain reaction (PCR) in reproducing reads of different lengths

and compositions (Aird et al., 2011; Minikel, 2012). Removing

duplicate reads—reads of the same length and sequence iden-

tity—is a widely used practice to correct this bias when analyzing

NGS data (Fig. 1a) (DePristo et al., 2011; Li et al., 2009). The

underlying assumption of this approach is that PCR amplifica-

tion is responsible for most of the read duplication. Extending

from this assumption, a long-standing recognition has been held

in the community that removing duplicate reads at least does not

harm the data.
An alternative source of read duplication is sampling coinci-

dence, whereby inserts are fragmented at identical genomic pos-

itions during library construction. The practice of removing

duplicate reads is well justified only when the sequencing depth

is low and sampling coincidence is unlikely. This was true when

most NGS applications were of low sequencing depths and were

oriented toward uncovering germlinemutations frommonoclonal

samples.However, as recent studies that aim todetect rare somatic

mutations from heterogeneous samples have pushed sequencing

depth to a highmagnitude (Ding et al., 2012; Shah et al., 2012), the

validity of this assumption requires serious re-evaluation.
This article provides a quantitative understanding of the

source of read duplication by quantifying the read duplication

that is induced by sampling coincidence. By providing a statis-

tical formulation for the bias of the allele fraction estimator

based on de-duplicated reads, we are led to conclude that at a

high sequencing depth, the practice of duplicate read removal

can overcorrect amplification bias. From simulations, we show

that the extent of overcorrection is jointly determined by the

sequencing depth, the variance of the insert size, the strategy*To whom correspondence should be addressed.
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used for marking duplicate reads and intrinsic sequence proper-

ties, such as the existence of segregating sites in the neighboring

region and the linkage disequilibrium (LD) pattern among sites.

To quantify the amount of sampling-induced read duplication,

we applied our model and overcorrection amendment method to

data from a clinical cancer sequencing platform that produces

500� to 2000� sequence coverage to exons in 202 targeted

cancer genes. Consistent with the currently applied assumption

behind duplicate read removal, we found that PCR amplifica-

tion, rather than sampling coincidence, is responsible for most

read duplication. When duplicate reads are removed, the read

depth is not as high as originally designed from the experiment,

reflecting an insufficient sample complexity in the experiment.

However, for reads that are treated as single-end reads because

the corresponding mates cannot be identified (�one-tenth of

reads), sampling-induced read duplication is not rare. Further,

when we artificially mixed different deep sequencing samples to a

much higher read depth, we observed more sampling-induced

read duplication, as expected. Hence, we predict that further in-

creases in sequencing depth or reduction in insert size variation

may lead to non-negligible biases that require a method of cor-

rection such as what we provide in this article.
In the field of RNA-seq, where read count is used to estimate

transcription level, two recent studies have taken into account

‘natural duplication’ (Baumann and Doerge, 2013; Mezlini et al.,

2013). This concept is analogous to what we study in this article,

albeit studied without systematic investigation of segregating

sites or VAF bias. With that in mind, the contribution of this

article is 3-fold. First, we call attention to the potential bias in

estimating VAF and copy number variation due to overcorrect-

ing read counts in deep DNA sequencing (particularly whole

exome sequencing for clinical applications). Although duplicate

read removal does not lead to substantial overcorrection on the
datasets we studied, our simulations demonstrate that overcor-

rection from duplicate read removal could be substantial at smal-

ler insert size variances and higher read depths. Second, we

provide insights into the design of ultra-deep sequencing experi-
ments such that duplicate read removal is most effective and

overcorrection is minimal. Third, we propose a practical compu-

tational method for estimating the amount of sampling-induced
read duplication for evaluating whether a dataset is amenable to

de-duplication and for amending the overcorrection. Through

simulations, we show that our methods can recover the true

VAF or copy number variation (up to the extent permitted by
the data).

2 METHODS

2.1 Modeling sampling-induced read duplication

We start by considering a single nucleotide variation (SNV) site with no

segregating sites in the neighboring region. Let n be the number of inserts

that cover site v (read depth), the VAF of allele i at site v be denoted by pi,PN
i pi ¼ 1, p be the vector composed of pi and N � j�j, where � is the

set of alleles. For a single site, � � fA,T,G,Cg. Because v is the only

segregating site in this region, we classify unique inserts—inserts with

distinct start and end locations when aligned—by the insert size and

the allele identity at v. Each element in the matrix m ¼ fml, hg stands

for the number of unique inserts of length l and covering allele h 2 �

at v. Likewise, c is a matrix where cl, h denotes the number of reads (not

necessarily unique) of length l and covering allele h at v. The probability

of observing unique read configuration m given the underlying allele

fraction p can be modeled by marginalizing out all possible values of

insert size configuration n0 and read count configuration c.

PðmjpÞ ¼
X
c

PðmjcÞ
X
n0

Pðcjn0, pÞPðn0Þ, ð1Þ

where n0 is the vector of the number of inserts of each insert size, i.e. n0l is

the number of inserts of insert size l. Pðn0Þ can either be learnt from data

or modeled using a multinomial distribution with normally distributed

means (Supplementary Section S1). Pðcjn0, pÞ models the sampling of in-

serts that covers each of the alleles in a multinomial distribution,

cl, h �Mðn
0
l, pÞ or

Pðcjn0, pÞ ¼
Y
l

nl!Q
h

cl, h!

Y
h

p
cl, h
h , ð2Þ

assuming the probability of an insert covering allele h is independent of

the probability of it having a certain insert size, l.

The term PðmjcÞ models the sampling coincidence. Assuming that the

position samplings of reads of different lengths and allele identities are

independent, the joint probability can be expressed in the product

PðmjcÞ ¼
Q

l, h Pðml, hjcl, hÞ. Given an insert size l, there are

� ¼ minðl, 2rÞ ways of positioning the read, where r is the read length

(Fig. 1c). In other words, there are only � possible unique inserts that can

cover site v for each allele. We assume for one sampling that seeing each

of the � candidate inserts is equally probable. The probability of obtain-

ingml, h unique inserts from sampling a total of cl, h reads can be described

by the following distribution:

Pðml, hjcl, hÞ ¼

S2ðcl, h,ml, hÞ�!

�cl, h ð��ml, hÞ!
if cl, h � ml, h, �4ml, h

1�
X��1
m¼1

Pðmjcl, hÞ if cl, h � ml, h, � ¼ ml, h

1 if cl, h ¼ ml, h ¼ 0
0 otherwise

8>>>>>>><
>>>>>>>:

ð3Þ

Fig. 1. Duplicate read removal and insert cover. Duplicate reads removal

for (a) single-end reads at a single SNV site. The arrow indicates the

procedure of duplicate read removal, (b) single-end reads at multiple

sites, (c) paired-end reads at single SNV site and (d) paired-end reads

at multiple SNV sites. Each color of the inserts corresponds to a

unique insert cover, �. Boxed reads are regarded as duplicates and are

removed
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where S2ðc,mÞ denotes the Stirling number of the second kind

(Abramowitz and Stegun, 1972). See Supplementary Section S1.1 for a

detailed derivation of this expression.

2.2 Generalizing to multiple sites

The aforementioned formulation can be extended to multiple sites that

are close to each other and can potentially be covered by the same insert.

Because neighboring SNV sites can alter the probability of sampling-

induced duplication at the target site (Section 3), it is best to consider

SNV sites that are covered by at least one insert as one multiple nucleo-

tide variation site, when estimating sampling-induced duplication.

Let � be a maximum phasable window (MPW), which is defined as a set

of contiguous SNV sites in the genome such that no insert simultaneously

covers an SNV site inside and outside the window. Let w be the number

of SNV sites in �,H be the set of all possible haplotypes andN � jHj. For

example, if all sites are biallelic, N ¼ 2w. The distances between these

SNV sites (the number of nucleotides in between plus one) are denoted

by d1, d2, :::, dw�1. An insert cover � � � is the set of SNV sites that are

visible from the insert. � is the set of all insert covers (see Fig. 1b and d

for an illustration). For inserts composed of one single-end read, there

can be ð
wþ 1
2
Þ ¼ wðwþ 1Þ=2 different insert covers. For inserts of two

paired-end reads, the number of all possible insert covers isP
i¼2, 3, 4 ð

wþ 1
i
Þ. The number of SNV sites included in the cover

� 2 � is denoted by �ð�Þ. For each cover �, H� denotes the set of haplo-

types defined by sites in �. Two haplotypes defined on different covers are

compatible if they agree on the shared sites. Haplotypes defined on non-

overlapping inserts are by definition always compatible. We use the no-

tation gfflh, g 2 H�1 , h 2 H�2 to indicate compatibility. Because a certain

insert size allows for only a subset of insert covers of �, we use notation

�ðlÞ � � to denote the set of insert covers that is allowed by inserts of

insert size l. We use ml, � to denote the number of unique inserts observed

from the data that have insert size l and that cover � 2 �, and �l, � to

denote the number of all possible unique inserts of length l and that cover

� (see Supplementary Section S2 for a computation of �l, � in both cases

of single-end and paired-end reads).

The fraction of unique reads reporting each haplotype on the entire

MPW is pi, i 2 H�. In contrast to the single site case in which each read

that covers the target site v can unambiguously resolve the allele identity,

only the cover �	 � � that includes all sites (the ‘widest’ cover) can phase

the full haplotype. The other covers only restrict the possibilities to a

smaller subset of haplotypes. Reads of different covers contribute differ-

ently to the VAF for the full haplotype. Therefore, we need to separately

consider read counts for reads with different lengths and covers.

Following the notations used in the single site case, m is the number of

unique reads that at least partially overlap with �, except that m is now a

multilinear integer field: ðN���HÞ ! N. The domain of m is jointly

and incrementally delineated by (i) the insert size (l 2 ð0,LÞ), (ii) the insert

cover (� 2 �ðlÞ) and (iii) the haplotype revealed by the cover (h 2 Hð�Þ).

The same applies to c, which denotes actual insert counts with a specific l,

� and h. Extending from Equation (1), the probability of obtaining ml, �, h

unique inserts can be modeled by marginalizing out all possible insert size

configurations (n0), cover configurations (n00) and read count configur-

ations (c):

PðmjpÞ ¼
X
c

PðmjcÞ
X
n00

Pðcjn00, pÞ
X
n0

Pðn00jn0ÞPðn0Þ: ð4Þ

Here, n0l (an element of n0) is the number of reads (not necessarily

unique) that are of insert size l, n00l, � (an element of n00) is the number of

reads that are of insert size l and cover � (see Supplementary Section S3

for details), n0 is a vector and n00 is a matrix. When there is only one site

(w¼ 1), � contains only one cover. Hence, n0 and n00 have the same

dimension and a one-to-one correspondence. The aforementioned deriv-

ation reduces to the single nucleotide case [Equation (1)].

To model insert positions, PðmjcÞ ¼
Q

l, �, h Pðml, �, hjcl, �, hÞ, assuming

independence of sampling from the insert size, cover and haplotypes.

Pðml, �, hjcl, �, hÞ has the same form as the single site case [Equation (3)]

after replacing ml, h with ml, �, h, cl, h with cl, �, h and � with �l, �. The prob-

ability of the insert’s haplotype is modeled as a multinomial distribution.

And the assignment of inserts to different haplotypes is assumed to be

independent from the insert size and the cover. The haplotype sampling

has the following form:

Pðcjn00, pÞ ¼
Y
l, �

n00l, �!Q
h

cl, �, h!

Y
h

q
cl,�, h
h

2
64

3
75, ð5Þ

which is the same as Equation (2), except that qh ¼
P

g2H� , gfflh pg. That is,

the expectation of haplotype h is the sum of the expectations of all the

haplotypes g 2 H� on the full MPW that are compatible with h.

The term Pðn00jn0Þ models the sampling of covers given inserts with

particular sizes in a multinomial distribution or n00 � Mðn0, �Þ. The ex-

pectation for the count of inserts having a particular cover is proportional

to the number of unique inserts with that cover:

�l, � � Eðn00l, �Þ ¼ ��, l=
P

� ��, l.

2.3 Variant allele fraction estimator

For cases with single SNV sites, the allele fraction is estimated by com-

puting the proportion of all unique inserts of that allele over all possible

insert sizes, i.e. p̂0 ¼ fp̂0hgh2�, where

p̂0h ¼

P
l

ml, hP
g2�

P
l

ml, g
:

For cases with multiple sites, due to the ambiguity encountered in

phasing the haplotype on the full MPW from inserts with � 
 �, the

haplotypes of the entire MPW can be estimated by maximizing the like-

lihood function defined in Equation (5) and replacing c by m (which is

considered the corrected read count), i.e. p̂0 ¼ argmaxp Pðmjn
0, pÞ:

2.4 Amending read count overcorrection

In practice, the number of unique inserts (m) is used where read count (c)

is meant because the observed read count is believed to have been dis-

torted by amplification biases. However, due to the presence of sampling-

induced read duplication, such treatment can be a substantial overcorrec-

tion of the read count (Section 3). Hence, we seek a maximum likelihood

estimation ĉ of c from m by

ĉl, h ¼ arg max
c

Pðml, hjcÞ ¼ arg max
c

S2ðc,ml, hÞ=�
c ð6Þ

Here, the likelihood function is given by Equation (3) with irrelevant

multiplicative terms omitted. The Stirling numbers are precomputed and

retrieved in constant time. Equation (6) assumes ml, h5� and � 6¼ 0.

When � ¼ 0, no such insert is possible. Whenml, h ¼ �, ĉl, h is unbounded.

This is the case of saturation. Intuitively, the more inserts one provides,

the more likely saturation will be attained. Hence, inserts of lengths that

result in saturation do not contribute to our understanding of the VAF,

and we exclude inserts of such lengths in our read count correction. In the

case where read counts from multiple alleles are compared, inserts of a

length are excluded for all alleles even if they saturate the read count for

only one allele.

The allele fraction is then estimated from the corrected read count by

p̂00i ¼
P

l2L ĉl, h=
P

h

P
l2L ĉl, h, where L is the set of all insert sizes such

that inserts of that insert size saturate the read count for none of the

alleles, i.e. L ¼ fljml, h 6¼ �,8h 2 �g.
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Figure 2 plots the correction of read counts for the simplest case, where

reads are single-end and of length 200. When unique read count is low

(550), the correction is negligible. The corrected read count surges dras-

tically as the unique read count approaches the read length.

Generalizing to multiple sites, the de-duplicated read counts for a given

insert size, cover and haplotype can be amended by the same formula as

Equation (6), but replacing ml, h with ml, �, h and � with �l, �.
The fractions of haplotypes of the entire MPW are estimated from the

corrected c by maximizing the likelihood function defined in Equation

(5). Here, the count of inserts of each insert size and cover (n00) can be

obtained from the data. After omitting the irrelevant multiplicative terms,

the log likelihood function breaks down to

LðpÞ � logPðcjn00, pÞ ¼
X
h

ch log
X
gfflh

pg, ð7Þ

where ch �
P
ðl, �Þ2C cl, �, h. As in the case of single site, we exclude in

our estimation all the combinations of insert size and cover such

that any haplotype of the combination is saturated:

C ¼ fl, �jml, �, h 6¼ �, 8h 2 H�g.

Owing to the constraint
P

h ph ¼ 1, we regard the frequency of an

arbitrarily chosen haplotype � as being dependent on the other haplotype

fractions: p� ¼ 1�
P

h6¼� ph. The gradient of the likelihood function has

the following expression:

@LðpÞ

@pi
¼
X
hffli

chP
gfflh

pg
�
X
hffl�

chP
gfflh

pg
, i 6¼ �:

Then we apply a conjugated gradient method to optimize the likeli-

hood function.

Because the estimation of cl, �, h is subject to greater randomness when

ml, �, h ! �l, �, we loosen the criterion for saturation to ml, �, h � �l, � �  ,

where the parameter  ¼ 1 (i.e. we also exclude combinations of insert

size and cover with ml, �, h ¼ �l, � � 1).

3 RESULTS

3.1 Overcorrection from duplicate read removal

The number of unique reads of a particular length that can cover

a site is equal to the read length. Intuitively, when the read depth

tends to infinity, the number of reads that support each allele at

the target site is equal to the read length regardless of the under-

lying allele fraction. In Supplementary Section S4, we give a brief

proof of this intuitive conjecture that p̂0 is biased.

3.1.1 Higher coverage and lower insert size variance result in
greater bias We use simulations to investigate various factors
that affect bias in the following. We restrict our analysis to

single-end reads for this section. The conclusions can be readily

extended to paired-end reads by properly choosing the number

of reads/inserts that cover a site by replacing � ¼ r with

� ¼ minðl, 2rÞ. Hence, in the following text, we use the terms

‘read’/‘insert’ and ‘read length’/‘insert size’ interchangeably

unless specified.

Consider a scenario where three alleles exist for a site v in the

sample. These three alleles have the following VAFs: 1/8, 3/8 and

4/8. We first consider the simplified scenario where the insert size

is fixed at 200. We compare the biases against the numbers of

reads that cover a specific site v (or the coverage at v). As ex-

pected, the estimated allele fractions deviate from their true value

as coverage increases (see Supplementary Fig. S2). Thus, we cor-

roborate our theoretic prediction that the VAF estimation may

be biased when sequencing depth is high and sampling-induced

read duplication is non-negligible.

When the insert size is allowed to vary, we investigate the joint

effect of the mean as well as the variance of the insert size dis-

tribution under the aforementioned simulation setting. We ob-

serve that the longer and the more variant the insert size, the

greater the number of unique reads that can cover site v (see

Supplementary Fig. S3). This can be understood by knowing

that higher variance in insert size effectively helps differentiate

reads and reduce sampling-induced read duplication.
The extension of PCR amplification also depends on the insert

size. The use of precision in selecting the insert size helps reduce

the PCR amplification bias; but on the other hand, it introduces

bias if duplicate reads are removed. Thus, the choice of different

insert size selection directly affects the subsequent data analysis

strategy, namely, whether to perform duplicate read removal

(Section 4).

For samples with clonal heterogeneity, sites are usually bial-

lelic and the fraction of the minor variant has the most clinical

relevance. In Figure 3, we provide an estimation of the magni-

tude of the bias at different settings of the two most important

factors: the coverage and the insert size variation. By mapping to

this heat map, one may get a rough estimate of the magnitude of

the bias in his/her estimation of the VAF. For example, when

one has an insert size standard deviation �20 and coverage

�5000, the bias is �0.01, which is �20% compared with the

true value at 0.05. See Supplementary Section S7 of bias plots

at different VAF values (which are qualitatively similar).

3.1.2 Low entropy allele fractions are more biased, and germline
samples remain unbiased In investigating the bias in specific
allele fraction configurations, we also observe that the VAF

bias is inversely correlated with the information entropy of the

VAF configuration, which is defined as HðpÞ ¼ �
PN

i pi logN pi.

This trend can be understood by considering the fact that the

convergent bpi ¼ 1=N 8i ¼ 1, ::,N—all alleles are equiprob-

able—has maximum entropy given the number of alleles. To il-

lustrate this by simulation, we randomly sample VAFs of the four

alleles and for each VAF, we estimate the magnitude of the bias

(Supplementary Fig. S6). The higher the VAF entropy, the lower

is the VAF bias (Spearman’s � ¼ �0:72,P ¼ 7:3� 10�84).

Another corollary from this observation is that VAF estimation

Fig. 2. Read count correction. The dashed line corresponds to y¼ x. The

vertical line is at x¼ 200 and corresponds to saturation
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in germline samples remains unbiased if no segregating sites exist

in the neighboring region.

3.1.3 Segregating sites in the neighboring region and LD In
deriving the overcorrection bias on single sites, we assume that

the neighboring region has no segregating sites. In cases where the

neighboring region does contain segregating sites, we can estimate

the asymptotic value of the estimator p̂0 as coverage tends to in-

finity by lim
c!1

p̂0 ¼ 	i=
P

j 	j, where 	i is the number of unique

haplotypes that cover allele i within the reach of each insert size.
In Supplementary Figure S7, we simulate the previous ex-

ample of three alleles but introduce segregating sites in the neigh-

boring region and investigate the bias. Intuitively, neighboring

segregating sites help increase the number of unique reads that

cover the target site. When all the segregating sites are in linkage

equilibrium, the magnitude of the bias is reversely associated

with both the number of segregating sites and the number of

alleles per site (Supplementary Fig. S7). Because of linkage equi-

librium, 	i=
P

j 	j ¼ 1=j�j. In other words, each allele at the

target sites is paired with an equal number of haplotypes defined

by the alleles in the neighboring sites (	i ¼ 	j, 8i, j 2 �).

Therefore, the limiting VAF estimates remain the same.
In computing 	i, the knowledge of the positions of these segre-

gating sites or how far they are from the target site is a prerequis-

ite. The farther they are from the target site, the less likely it is that

a read can be positioned to cover both the target site and the

segregating sites, resulting in a weaker effect of these segregating

sites. We simulate a simplified scenario with only one extra segre-

gating site (Supplementary Fig. S8). The magnitude of the bias is

compared against the distance between the neighboring segregat-

ing site and the target site. As expected, we observe that the longer

the distance, the greater is the bias. Combining the previous con-

clusion that the presence of a segregating site reduces the bias

helps us understand this result by considering a diminishing re-

ductive effect from the sites farther from the target.
When the neighboring sites are in LD with the target site, the

limiting VAF estimates deviate from 1=j�j. For simplicity in

computing the LD, we consider a scenario where both the

target site and the segregating site (there is only one) contain

two alleles. We consider two scenarios: (i) the target site has an

allele fraction of p1 ¼ 0:2, p2 ¼ 0:8 and (ii) the target site has an

allele fraction of p1 ¼ p2 ¼ 0:5. The first scenario corresponds to

the case where there is sample heterogeneity or somatic copy

number variation. The second scenario corresponds to pure

germline samples. In the first case, the segregating site has

allele fraction q1 ¼ 0:5, q2 ¼ 0:5. In the second case, we assess

both q1 ¼ q2 ¼ 0:5 and q1 ¼ 0:3, q2 ¼ 0:7 for the allele fraction

on the segregating site. In both scenarios, we find that both the

mean and the variation of the VAF determined by the level of

LD and allele fraction estimated from germline samples remain

unbiased (see Supplementary Section S10 for details).

In summary, the bias caused by overcorrecting sampling-

induced read duplication when removing duplicate reads is af-

fected not only by the number of segregating sites in the neigh-

boring region but also their positions and the linkage pattern

between the target site and the segregating sites. For a correct

estimation of the allele fraction at a site where the neighboring

region contains other SNV sites, it is more appropriate to treat

these SNV sites together with the target site and estimate haplo-

type frequency on the entire DNA segment (the so-calledMPW),

the neighborhood of which we can assume has no segregating

sites (Section 2). The subsequent allele fraction at a single site is a

direct summation of the fractions of all the haplotypes with the

allele defined on this segment.

3.2 Read count amendment in simulations

To assess our amendment to the overcorrection of duplicate read

removal, we conduct two simulations. In one, we target detecting

copy number variation by estimating the ratio of the copy

number at a single site in two different samples. In the other

simulation, we estimate the VAF at a multiple nucleotide vari-

ation site composed of two neighboring SNV sites.
Suppose we have two sets of reads that cover a site v. They

correspond to tumor and normal samples from the same cancer

patient. We want to compute the copy number variation between

the two samples. Suppose e1 and e2 are the respective copy num-

bers of a site from the two samples, respectively, and c1 and c2
are the observed counts of reads from the two samples. To

model the amplification bias, we introduce 
 such that

c1=c2 ¼ 
e1=e2.
To illustrate the joint effect of bias that arises from amplifica-

tion and bias from removing sampling-induced duplication, we

consider the situation where e1=e2 ¼ 1=3. We suppose that amp-

lification has preferentially enriched alleles in the second sample

by 
 ¼ 1=2, i.e. each read in the second sample is amplified twice

as much as the reads in the first sample. At low coverage, if one

removes all read duplicates (as depicted in red in Supplementary

Fig. S11), one obtains a copy number variation with an expect-

ation closer to the true ratio of 1/3. But the expectation starts to

deviate from the true copy number variation and approaches the

saturation ratio at one as coverage increases. The blue dots and

boxes correspond to a process of counting reads without remov-

ing read duplicates. Their expectations remain at the biased ratio

of 1/6. In both cases, the variance drops with the rise of coverage.

This illustrates that although the removal of duplicate reads

Fig. 3. The VAF bias determined by coverage and insert size variance.

Reads are paired-end and read length is 76. The insert size distribution is

modeled as a Gaussian distribution with mean at 200 and standard de-

viation shown on the x-axis. The true VAF is 0.05. The darkness at each

position indicates the magnitude of the bias in the VAF
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corrects for amplification bias at a low coverage, as coverage

increases, overcorrection caused by removing sampling-induced

read duplication is introduced.
In Supplementary Figure S11, the green boxes correspond to

the amendment based on de-duplicated read counts. As shown in

the figure, the correction successfully brings the biased read

count ratio back to the true copy number variation. Although

the variance of the copy number variation based on the amend-

ment also has a reduced variance as coverage increases while

remaining under 2000, it plateaus as coverage further increases.

This is in contrast to the copy number variation estimated from

the raw read count (Section 4). Again, this result emphasizes the

distinct origins of read duplication: sampling coincidence and

amplification artifact. Our overcorrection amendment method

is capable of recovering sampling-induced read duplication as

is necessary for accurately estimating copy number variation.

In the second simulation, we model the estimation of the

haplotype frequency of a double nucleotide variation. Suppose

the two SNV sites are 50 bp apart, and both sites are biallelic. Let

a1, a2 and b1, b2 denote the alleles at the two sites. The haplotype

frequencies for ða1, b1Þ, ða1, b2Þ, ða2, b1Þ, ða2, b2Þ are 0.1, 0.3, 0.3

and 0.3, respectively. To introduce amplification bias, we amplify

reads from the four haplotypes to folds of 2:2:2:1.

Supplementary Figure S12 shows the estimation of the haplotype

frequency of ða1, b2Þ, which has a true haplotype frequency of

0.3. As shown in blue, estimation based on all the reads suffers

from the amplification bias and is different from the true value of

0.3. As shown in red, estimation based on de-duplicated reads

also deviates from the true value and converges toward 1/4

(which is one divided by the number of haplotypes) as coverage

increases. Both estimates have a reduced variation as coverage

increases. Estimation based on the amendment (green color) re-

mains unbiased at the true haplotype frequency. Thus, the use of

our amendment again corrects the bias in haplotype frequency

estimation. In contrast to the estimates made without applying

the amendment, the amended haplotype frequency has a reduced

variance only before coverage reaches �3000, which is the cover-

age at which some combinations of cover and insert size begin to

become saturated (data not shown).

3.3 Sampling-induced read duplication in clinical

sequencing data

We apply our methods to a cancer dataset, T200 (SRA accession:

SRP033243), in which the exons of 200 cancer-related genes are

sequenced to a read depth of 2000 � 3000� (500 � 2000� after

removing read duplications). DNA samples obtained from lung

cancer cell lines with known mutations are sequenced on a HiSeq

2000 (Illumina Inc., San Diego, CA, USA) on a version 3 TruSeq

paired end flowcell according to the manufacturer’s instructions,

at a cluster density between 700 and 1000K clusters/mm2. In the

T200 dataset, the insert sizes havemean� ¼ 173:2 and a relatively
large variance (� ¼ 51:1). Compared with a normal distribution,

the distribution of the insert size is skewed toward the long end

(Supplementary Fig. S13). Because most reads are of a fixed read

length (76 in some of the samples and 100 in others, depending on

the sequencing platform), we regard reads of other read length as

of poor quality and exclude them from the analysis.

From 675 SNV sites called from one sample, 371 contain no

other segregating sites within 700 bp, and the other 304 SNV sites

are organized into 77 MPWs. Each contains 2–32 SNV sites.

Figure 4 shows plots, for the single site cases, of the read counts

before and after duplicate read removal (y- and x-axes of the ‘x’

markers) together with the maximum likelihood amendment of

the read count based on de-duplicated reads (dots). The left panel

shows sampling-induced duplication based on marking the dupli-

cate reads and accounting for the mate reads. In contrast to the

large deviation of the ‘x’ markers from the x¼ y line, the dots are

close to this line, meaning that sampling-induced read duplication

is rare in this case. Most read duplication is probably due to PCR

amplification rather than sampling coincidence.

The right panel shows the same result but for marking the

duplicate reads as if they are single-end reads. This is done be-

cause in some instances, the two mate reads are not well

sequenced or mapped. In this dataset, we found 204895 such

single-end reads aside from 790 142 complete inserts (the mate

reads of which can be identified). In contrast to paired-end reads,

single-end reads are more susceptible to sampling-induced read

duplication because they lack the mate read information that

differentiates themselves from other reads. Similar results are

observed from multiple sites (Supplementary Fig. S14).
To illustrate sampling-induced read duplication under this

insert size variation, a higher read depth is necessary. We mix

reads from 82 samples from the T200 dataset. In this way, we

obtain one dataset of up to 10 000 coverage. After de-duplica-

tion, only about one-tenth of the reads is left (Table 1); therefore,

the read depth is not as high as it seems. Only complete inserts

are used in computing the VAF. In the rightmost column of

Table 1, p00v indicates the VAF when accounting for sampling-

induced duplicate reads, but not those originating in the ampli-

fication process. In the four sites we show in Table 1, the value of

p00v lies between that of the allele fraction calculated from raw

inserts (pv) and the allele fraction calculated from de-duplicated

inserts (p0v). In all four sites, p00v deviates from p0v, which is an

indication of the presence of sampling-induced duplication.

The magnitude of deviation is higher for sites with higher cover-

age, which is consistent with the simulation results.

Fig. 4. Read count in T200 data. Left panel: paired-end reads duplication

removal for single SNV site. That is, insert size is accounted for while

marking duplicates. Right panel: Treat paired-end reads as single-end

reads, i.e. the mate reads are ignored. Sites are single SNV sites. The

‘x’ markers correspond to counting reads without removing duplicates.

Dots correspond to the read count correction using the model presented

in this article. The dashed gray line is the x¼ y line. Each dot corresponds

to a combination of the site, allele at the site and insert size of the reads

that cover the site. The same unique read counts can be corrected to

different values as a result of different insert sizes
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A strategy to reduce sampling-induced read duplication is to

divide the samples into different batches. This way, some sam-

pling duplicates can be distinguished by their batch origin. To

simulate this process, we merge different numbers of samples

from the T200 dataset. Conceptually, combining samples from

the same sequencing platform and ignoring the sample identity is

equivalent to obtaining a greater sample from the experiment

when the underlying sample complexity is properly augmented

correspondingly. As shown in Figure 5, the greater the number

of samples merged, the stronger is the bias due to more sampling-

induced read duplication.

4 DISCUSSION

It has been generally perceived that the accuracy of allele fraction

estimation can be infinitely improved by increasing sequencing

depth. The practice of duplicate read removal may be a limiting

factor for this improvement. This is because when read depth is

high, sampling-induced read duplication becomes more common

and their removal can disproportionately distort the read count.

The overcorrection amendment method introduced in this article

alleviates this problem, yet still fails to obtain an accurate esti-

mation of the original read count when the number of unique

reads is close to or at saturation (the variance of the maximum

likelihood estimator tends to infinity). In fact, as coverage in-
creases, more and more combinations of insert size and cover are
saturated. The variance of the haplotype frequency estimation is

not reduced as compared with the clear enhancement of the ac-
curacy of the estimation made from raw reads or de-duplicated
reads (Supplementary Fig. S12). Another reason is that the

number of unique reads m is constrained to integers. The vari-
ance cannot be further reduced as coverage approaches the point
where m! l (saturation; see green dots and boxes in

Supplementary Fig. S11). In fact, as m reaches a value close to
l, EðmÞ can never be reached. Thus one cannot accurately amend
the VAF from the estimator p̂0 based on one single sequencing

experiment. This is again in contrast to the estimator keeping
duplicate reads bpi ¼ ci=n where VarðbpiÞ ¼ pið1� piÞ=n, where the
higher the coverage, n, the smaller the variance and hence the

more accurate the estimation.
The choice of performing duplicate read removal depends on

whether the target quantity (e.g. VAF or copy number variation)
is distorted (disproportionately amplified) by read duplication.

The potential cause for distortion is PCR amplification bias and
the bias introduced from removing sampling-induced read dupli-
cation. Insert size variance is a key player in determining the

extent of both forms of biases. Data with large variances in
insert size are more susceptible to PCR amplification bias but
less susceptible to sampling-induced read duplication. For such

datasets, duplicate read removal is more appropriate. On the
other hand, for data with sharply selected insert sizes, PCR amp-
lification bias is smaller, whereas sampling-induced read dupli-

cation is more frequent.
In practice, the reported sequencing depth may be misleading

as it contains a large proportion (typically 30–70%) of amplifi-

cation-induced duplicate reads. These duplicate reads do not
help improve the measurement of the sample DNA. More spe-
cifically, the number of ligated fragments that can eventually be

captured by emulsion beads (ABI SOLiD and Roche 454 sequen-
cing) or by forming clusters on the flow cell lawn (Illumina
Solexa sequencing) is smaller than that of the sequenced reads.

For most applications that aim to decipher the VAF or copy
number, the more appropriate definition of read depth should
exclude PCR amplification-induced duplication. Based on such

definition, some ultra-deep sequencing datasets may not be as
deep as they seem.
An important limitation to the true read depth is the amount

of sample DNA fragmented in the initial stage of the sequencing
experiment or the so-called sample complexity. Assuming that all
sites from the whole genome have equal amounts of DNA and

no molecule is lost from fragmentation and size selection, the
theoretical coverage limit can be calculated by w=ðMLÞ 	NA,
where w is the weight of the DNA to start a sequencing experi-

ment.M ¼ 660� 109ng=mol=bp is the average molecular weight
of DNA molecules per base pair. L ¼ 3� 109bp is the length of
the genome and NA is Avogadro’s constant. In deep sequencing

experiments, w typically ranges from 200 to 500 ng, meaning that
the upperbound of the coverage is from 6� 104 to 1:5� 105.
This calculation assumes no loss from size selection and ligation,

which is unrealistic. If the procedure that includes fragmentation,
ligation, size selection and single molecule capturing loses� 90%

of these molecules (which is not unlikely considering the chance

of obtaining the desired insert size from random fragmentation),

Fig. 5. VAF bias on merging T200 samples At each number of samples

merged, we randomly select the given number of samples from 65 samples

with41000 read depth at the target site. The target site shown in the plot

is chr12:25398285 (KRAS). The size of each circle indicates the read

depth of the corresponding sample aggregation

Table 1. The VAF in T200 dataset

Mutation n nd pv p0v p00v

KRAS(G12C) 128746 11 449 0.1373 0.2604 0.2306

KRAS(Q61H) 120312 10 221 0.0509 0.0647 0.0532

PIK3CA(E545K) 76657 7842 0.034 0.0414 0.0354

STK11(Q37X) 23867 3362 0.1365 0.2073 0.2019

Note: All sites are biallelic. n is the number of inserts; nd is the number of inserts

after de-duplication; pv is the VAF computed using all inserts; p0v is based on de-

duplicated inserts; and p00v is computed by applying the maximum likelihood amend-

ment described in this article.
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the coverage limit is only several thousands. Further, because not
all sites are equally represented in the original DNA sample and
some samples (e.g. those from tumors) have an abnormally
higher ploidy and hence a higher L, the coverage limit may be

even lower. Therefore, if one starts from a small amount of DNA
(e.g. 10 ng) and sequences to a high coverage (e.g. 10 000�), most
reads will necessarily be duplicates from PCR amplification.

That being said, for samples with high coverage and truly high
complexity, sampling-induced read duplication will become non-
negligible.

Many factors besides the issue of read duplication can impact
the VAF estimation. For example, bias in ligating fragments to
the adaptor during library construction in the experiment can

cause uneven sampling of inserts at different genomic positions.
Our model assumes a uniform fragility of the genome; however,
real sampling may be biased by base content and produce certain
inserts more often than others, which will further aggravate sam-

pling-induced read duplication. This variation in the capturing
efficiency also applies to different exons in whole exome sequen-
cing. In addition, the quality of alignment impacts the read count

for a mutation site. For example, most alignment algorithms
tend not to map/report mutations, SNVs or small indels, at the
ends of the reads. This results in an underestimation of reads that

have mutations at their ends. Further, reads that originate from
paralogous regions may be mismapped, which will confound the
VAF estimation when alleles from all paralogous sites are
agglomerated and there exists a coverage bias between the par-

alogous region and the target region. This issue may also result
from erroneous fetching of DNA sequences from undesired
sources.

Our method can be extended to the scenario where one has
knowledge of the mutations and is further interested in estimat-
ing the copy number variation (as in some cases of RNA-seq).

For RNA-seq data, sampling-induced read duplication can be
more extensive due to the uneven distribution of gene expression
(highly expressed genes are more susceptible; see Supplementary

Section S15 for an application to RNA-seq data). Compared
with RASTA (Baumann and Doerge, 2013) and iReckon
(Mezlini et al., 2013), our method does not make decisions as
to the amount of sampling-induced read duplication for each

unique insert/read. Rather, our method relies on the number of
observed unique reads covering the target mutation site to infer
the true count of reads that are not necessarily unique.

Besides computational remedies to amplification duplications,
some recently emerging experimental techniques are showing
promise as ways to resolve the current dilemma of read duplica-

tion. For example, in digital-PCR (Shiroguchi et al., 2012), each
fragment is given a unique identifiable barcode before amplifica-
tion, which allows for the estimation of fragment abundance by
merely counting the barcodes. With further reduction in cost and

removal of restrictions in sequencing depth (Baumann and
Doerge, 2013), such a technique may replace the currently used
paradigm of estimating allele frequencies.

5 CONCLUSION

Removing read duplicates, while correcting for PCR amplifica-
tion bias, could introduce another bias owing to overcorrection

of read counts as a result of sampling-induced read duplication.

This bias is of particular concern when the sequencing is deep

(e.g. 45000�) and the insert size is short and non-variant.

A maximum likelihood amendment can be applied to the

number of de-duplicated reads to account for sampling-induced

read duplication. Sampling-induced read duplication in most

current ultra-deep sequencing experiments is not prevalent due

to the presence of a substantial amount of PCR amplification-

originated duplicate reads. Nevertheless, attention must be paid

to duplicate read removal in ultra-deep sequencing experiments

that perform fewer rounds of PCR amplification and use tightly

selected insert sizes.
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